Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
299 kez görüntülendi

$z=cos(x)+isin(x)$ olduğuna göre $z^2+1=z$ eşitliğini sağlayan x açısı kaç derece olabilir?
$Cevap=60$

Orta Öğretim Matematik kategorisinde (33 puan) tarafından  | 299 kez görüntülendi

Denklem çözümü yapıp,kökleri bir türlü bulamadım.

1 cevap

0 beğenilme 0 beğenilmeme

$(Cosx+iSinx)^21=Cosx+iSinx\Rightarrow Cos^2x-Sin^2x+2iCosx.Sinx+1=Cosx+iSinx$ olmalıdır. Buradan reel kısımların ve sanal kısımların birbirine eşitliğinden $Cos^2x-Sin^2x+1=Cosx......(1)$ ve $2Cosx.Sinx=Sinx........(2)$ olur. Bulunan bu eşitliklerden $(1) $ kullanılırsa,

$2Cos^2x-Cosx=0\Rightarrow Cosx=0, Cosx=\frac 12\Rightarrow x=90,270,60,300$ değerleri bulunur. Öte yandan $(2)$ eşitliği kullanılarak, $Sinx(2Cosx-1)=0\Rightarrow Sinx=0,Cosx=\frac 12$ değerleri bulunur. Bunlardan $x=0,180,60,300$ olarak bulunur. Her iki denklemi sağlayan değerlerden birisi cevaptır.

(19.2k puan) tarafından 
20,284 soru
21,823 cevap
73,509 yorum
2,571,448 kullanıcı