Bişeyler denedim ama ``sayı`` bile elde edemedim.
lml ≠ 1 , lml ≠ 0 , lnl ≠ 1, lnl ≠ 0 , $m^{4n}$ = $n^m$ ve n=$m^3$ ise $n^2$=?
Gerekli yerlere virgül koy.
Cevabı ne? Eğer doğruysa çözümü atacağım.
27/64 sorunun cevapı
$n=m^3$ ise $m^{4n}=n^m$ eşitliğinde bu yazılırsa $m^{4m^3}=m^{3m}$ elde edilir. Burdan $4m^3=3m$ olur.$3m$ sol tarafa atılırsa $4m^3-3m=0$ olur. $m$ parantezine alınırsa $m.(4m^2-3)=0$ olur.Yani $m=0$ veya $4m^2=3$ olur.$m=0$ olamayacağına göre $4m^2=3$ olur. Yani m=$\sqrt 3/2$ bulunur.$n=m^3$ olduğu için m yerine $\sqrt 3/2$ yazılırsa n=($\sqrt 3/2)^3$ bulunur.$n^2$ ise ($\sqrt 3/2)^6$ bulunur.Yani $27/64$ bulunur.
Teşekkürlerrr:)
Önemli değil. Umarım anlaşılmıştır.