Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
499 kez görüntülendi

0 $\geq $ $x^2$-3x-18  x in alabileceği kaç farklı değer vardır?

İzlediğim yol:

0 $\geq $ (x-6).(x+3)

0 $\geq $ (x-6)     ve    0 $\geq $ (x+3)

6 $\geq $ x          ve    -3 $\geq $ x

buradan sonra ne yapmalıyım?

deneyerek değerleri buluyorum ama zahmetli ...

Orta Öğretim Matematik kategorisinde (635 puan) tarafından 
tarafından düzenlendi | 499 kez görüntülendi

(x-6)  ve  0  (x+3) ifadesi hatalı, iki ifadenin çarpımı negatifse ikisi de negatif olamaz değil mi, yoksa çarpım pozitif olurdu. birinin pozitif diğerinin negatif olduğu durumlara bakmalısın.

Peki hangisini negatif hangisini pozitif secmemiz neye bagli. mesela dediginizi dikkate alarak x-6 kucuk esit 0 dedim ve x+3 icin de buyuk esit 0 deyince istedigim sonuca ulastim. fakat bunu neye gore belirliyoruz?

$ax^2+bx+c=f(x)$ fonksiyonunun işareti, $f(x_1)=0 $ ve $f(x_2)=0$ yapan $x_1$ ile $x_2$ değerleri arasında $a$ başkatsayısının işareti ile terstir. 

Sizin sorunuzda $a=1>0$ dır .Kökler de $-3,6$ dır. Dolayısıyla $-3\leq x \leq 6$ için  eşitsizlik sağlanır. 

hocam bu bahsettiğinizi daha ayrıntılı anlatan bir belge, video mevcut mudur? oradan bir inceleyeğim.

İnternette "İkinci dereceden bir bilinmeyenli eşitsizlik çözümleri" olarak ararsan sanıyorum bulabilirsin.

20,284 soru
21,823 cevap
73,508 yorum
2,569,992 kullanıcı