Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
$\sum\frac{(-1)^{\frac{p-1}{2}}}{p}$ serisinin yakinsak olmasi
0
beğenilme
0
beğenilmeme
321
kez görüntülendi
Serinin yakinsak oldugunu gosteriniz:
$\sum\frac{(-1)^{\frac{p-1}{2}}}{p}$ Toplam tum tek asallar uzerinde
seriler
14 Mart 2015
Lisans Matematik
kategorisinde
Sercan
(
25.2k
puan)
tarafından
soruldu
|
321
kez görüntülendi
cevap
yorum
bu boyle mi hakkaten ya.
?
Öyleymiş, bana öyle dendi.
cok merak ettim, yok mu bir ipucu ?
Buralarda bir legendre sembolu var galiba
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
0
Cevaplar
İlgili sorular
$k$ pozitif reel sayisi icin, $x^{2}-kx-6k^{2}=0$ denkleminin kökleri $x_1$ ve $x_2$ dir. Buna göre $\sum _{p=1}^{\infty }\left( \dfrac {x_{1}} {x_{2}}\right) ^{p-1}$ yakinsak serisinin degeri kactir?
$\displaystyle\sum _{n=0}^{\infty }\frac{1}{n^n} $ serisinin karakteri nedir?
$\displaystyle \sum^\infty_{n=0} \frac{sin^{2n}x}{2n+1}$ serisinin yakınsadığı değeri bulalım
$\sum_{\text{$p$ asal}} \frac{1}{p}$ serisinin karakteri?
Tüm kategoriler
Akademik Matematik
744
Akademik Fizik
52
Teorik Bilgisayar Bilimi
29
Lisans Matematik
5.3k
Lisans Teorik Fizik
112
Veri Bilimi
142
Orta Öğretim Matematik
12.6k
Serbest
1k
19,943
soru
21,581
cevap
72,660
yorum
931,868
kullanıcı