Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
381 kez görüntülendi

$a,b,N,M  >1$ olmak uzere $a^N-b^M=1$ kosulunu saglayan $(a,N,b,M)$ tam sayi $4$luleri nelerdir?

Bir ornek olarak: $(3,2,2,3)$.

Akademik Matematik kategorisinde (25.2k puan) tarafından  | 381 kez görüntülendi

$N\neq M$ olmalı mıdır hocam?

Oyle bir kosul yok. Fakat olmamasi gerektigini gosterebilirsin: $$a^n-b^n=(a-b)(\cdots)$$

Benim de o biraz kafamı karıştırdı $N=M$ için sonsuz sayıda çözüm bulunmaz mı? (Bu sebepten ötürü bütün tamsayı dörtlülerini bulamayiz?)

$a-b=1$ olmali degil mi? Bu durumda $$(b+1)^n-b^n= \sum_{k=0}^{n-1}\binom nkb^k>  \sum_{k=0}^{n-1}\binom nk=2^{n}-1$$ olur.  Hatta $c$ pozitif tam sayi olsun: $$(b+c)^n-b^n= \sum_{k=0}^{n-1}\binom nkb^kc^{n-k}>  \sum_{k=0}^{n-1}\binom nk=2^{n}-1$$ olur yine. $n\ge 2$ icin $$2^n-1\ge 3$$ olur.

Yani aslında bu soruya vereceğimiz cevap bütün dörtlüleri yazmak değil sağlandığı şartları göstermek tarzında mı olmalı? (''tam sayı dörtlüleri nelerdir?'' ifade ediş şekli benim kafamı karıştıran, tam olarak ne isteniyor?)
19,943 soru
21,581 cevap
72,660 yorum
931,797 kullanıcı