Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
6.1k kez görüntülendi
Serbest kategorisinde (93 puan) tarafından  | 6.1k kez görüntülendi

4 Cevaplar

0 beğenilme 0 beğenilmeme

$G$ cismimizin carpmaya gore grubu olsun. Hiclik birim eleman olacagindan, bir elemani hic yazmamak $1$ demektir.

O zaman: neden $0^0$ tanimsiz? Zaten sifir bu grubun icinde degil, sifiri icine alirsak toplamaya gore bir grup olur ve onun birimi de $0$ olur. $0.0=0$ da dogru bildigimiz uzere.

Toplama olarak hici dusunup bunu carpmaya uygularsak, daha iyi gozukur resim.

(25.5k puan) tarafından 
0 beğenilme 0 beğenilmeme

Çünkü $\ln 1=0$: $a\not =0$ bir sayı olsun. $a^0=1$ ise, o halde $0\cdot\ln a=\ln 1=0$ ve doğrudur. 

İstersen $1$ değil başka bir sayı seç keyfine göre, çelişki çıkacaktır. 

Ya da tersinden bakıp, $a^0=x$ deyip, yine $\ln$ ile, $0\cdot \ln a=\ln x=0$ denklemini çözersin ve $x=1$ bulursun.

(1.4k puan) tarafından 
tarafından düzenlendi

$\text{ln}x$ dogrusunun o noktada surekli bir fonksiyon ve orda 1 olmak durumunda. Isimize geldigi kismini ben cozemedim. Zaten $\text{ln}$'e girersek: $x^{1.2}$ nedir sorusu da dogabilir?

Ben $\text{ln}$ konusunda boyle dusundum? 

Doğru söylüyorsun. O kısım gereksiz. Değiştireyim.

0 beğenilme 0 beğenilmeme
Her sayinin ussu 0 olunca 1e esit olmaz soruyu duzenle tekrar. 
(79 puan) tarafından 
0 beğenilme 0 beğenilmeme

$a\neq 0$ ve  $ n\in{N} $ olsun.

$\frac{a^n}{a^n}=1$  ve  $\frac{a^n}{a^n}=a^{n-n}$ dir. Yani $a^{n-n}=1$ dolayısıyla $a^0=1$ dir.

(19.2k puan) tarafından 
20,280 soru
21,813 cevap
73,492 yorum
2,480,117 kullanıcı