İntegral :
$$\iint\limits_\mathbb{K}\:x^{\alpha-1}\:y^{\beta-1}\:d\:\mathbb{K}\\\mathbb{K}:x^2+y^2\le1\:\:\:,\:\:\:x,y\geq0$$
Yeni değişkenlerimiz :
$$u=x^2$$
$$v=y^2$$
İntegralin yeni hali :
$$\iint\limits_{\mathbb{L}}\:u^{\frac{\alpha}{2}-\frac{1}{2}}\:v^{\frac{\beta}{2}-\frac{1}{2}}\:\det\:J(u,v)\:d\mathbb{L}$$
Jakobian matrisinin değerini bulalım.
$$J(u,v)=\begin{bmatrix}\frac{\partial\:u}{\partial\:x}&\frac{\partial\:u}{\partial\:y}\\\frac{\partial\:v}{\partial\:x}&\frac{\partial\:v}{\partial\:y}\end{bmatrix}=\begin{bmatrix}\frac{1}{2\sqrt{u}}&0\\0&\frac{1}{2\sqrt{v}}\end{bmatrix}$$
$$\det\:J(u,v)=\frac{1}{4\sqrt{u\:v}}$$
$$\color{#A00000}{\frac{1}{4}\iint\limits_{\mathbb{L}}\:u^{\frac{\alpha}{2}-1}\:v^{\frac{\beta}{2}-1}\:\:d\mathbb{L}\\\mathbb{L}:u+v\leq1\:\:\:,\:\:\:u,v\geq0}$$
Sınır değerlerini yazalım.
$$\frac{1}{4}\int_0^1\int_0^{1-v}\:u^{\frac{\alpha}{2}-1}\:v^{\frac{\beta}{2}-1}\:du\:dv$$
İlk integrali çözelim.
$$\frac{1}{4}\int_0^1\underbrace{\bigg(\int_0^{1-v}\:u^{\frac{\alpha}{2}-1}\:du\bigg)}_{\large\big[\frac{2}{\alpha}u^{\frac{\alpha}{2}}\big]_0^{1-v}\:\to\:\frac{2}{\alpha}(1-v)^{\frac{\alpha}{2}}}\:v^{\frac{\beta}{2}-1}\:dv$$
$$\frac{1}{4}\frac{2}{\alpha}\int_0^1\:(1-v)^{\frac{\alpha}{2}}\:v^{\frac{\beta}{2}-1}\:dv$$
İntegrali beta ve gama fonksiyonu ile yazabiliriz.
$$\frac{1}{4}\frac{2}{\alpha}\underbrace{\int_0^1\:(1-v)^{\frac{\alpha}{2}}\:v^{\frac{\beta}{2}-1}\:dv}_{\large\:B\bigg(\frac{\alpha}{2}+1,\frac{\beta}{2}\bigg)\:\to\:\frac{\Gamma\big(\frac{\alpha}{2}+1\big)\Gamma\big(\frac{\beta}{2}\big)}{\Gamma\big(\frac{\alpha}{2}+\frac{\beta}{2}+1\big)}}$$
$$\frac{1}{4}\frac{2}{\alpha}\frac{\Gamma\big(\frac{\alpha}{2}+1\big)\Gamma\big(\frac{\beta}{2}\big)}{\Gamma\big(\frac{\alpha}{2}+\frac{\beta}{2}+1\big)}$$
Sadeleştirelim.
$$\large\color{#A00000}{\boxed{\iint\limits_\mathbb{K}\:x^{\alpha-1}\:y^{\beta-1}\:d\:\mathbb{K}=\frac{\Gamma\bigg(\frac{\alpha}{2}\bigg)\Gamma\bigg(\frac{\beta}{2}\bigg)}{4\:\Gamma\bigg(\frac{\alpha}{2}+\frac{\beta}{2}+1\bigg)}\\\mathbb{K}:x^2+y^2\le1\:\:\:,\:\:\:x,y\geq0}}$$