Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
$\displaystyle\prod_{\mathbb{N}} \mathbb{Q}\cong \displaystyle\bigoplus_{\mathbb{P}(\mathbb{N})}\mathbb{Q}$
0
beğenilme
0
beğenilmeme
133
kez görüntülendi
rasyonel-sayılar
doğrusal-cebir
20, Temmuz, 2015
Akademik Matematik
kategorisinde
Enis
(
1.1k
puan)
tarafından
soruldu
|
133
kez görüntülendi
cevap
yorum
İpucu: İki (sonsuz boyutlu) vektör uzayının da boyutlarını hesaplayın.
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
0
Cevaplar
İlgili sorular
$\displaystyle\overbrace{\idotsint}^{k}\limits_{\mathbb{F}}\prod_{n=1}^k\bigg(a_n^{b_n-1}\:da_n\bigg)=\frac{\prod_{n=1}^k\:\Gamma\Big(\frac{b_n}{2}\Big)}{2^k\:\Gamma\bigg(\Big[\sum_{n=1}^k\frac{b_n}{2}\Big]+1\bigg)}$
V boyutlu bir vektör uzayı ,S( a1,a2,,,an) C V ve Sp(S)= V olsun. En az i için 1<i<n T=S-{ai} olmak üzere Sp(T) eşit değildir V ise S lineer bağımsızdır gösteriniz
$ \mathbb{Q} $ rasyonel sayilar cismi olmak uzere $ \mathbb {Q}[x]/ (x^2 + 3) \cong \mathbb {Q}( \sqrt3\ i )$ oldugunu gosteriniz.
$[SL_2(\mathbb Z): \Gamma(N)]=N^3\prod_{p\mid N}(1-\frac1{p^2})$ oldugu
Tüm kategoriler
Akademik Matematik
671
Akademik Fizik
51
Teorik Bilgisayar Bilimi
25
Lisans Matematik
4.8k
Lisans Teorik Fizik
109
Veri Bilimi
118
Orta Öğretim Matematik
12.4k
Serbest
971
19,119
soru
21,037
cevap
69,880
yorum
23,361
kullanıcı