Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
56 kez görüntülendi
Sorumu örnek vererek açıklamak istiyorum.

$\int \dfrac{dx}{\sqrt{25x^{2}-4}}$ uygun dönüşüm yapıldığında $x=2/5 sec\theta$ dahasında elimizde

$\int \dfrac{\sec \theta \tan \theta d\theta }{\sqrt{4\left( \sec ^{2}\theta -1\right) }}=2/5\int \dfrac{\sec \theta \tan \theta d\theta }{2\sqrt{\tan ^{2}\theta }}=\dfrac{2}{5}\int \dfrac{\tan \theta \sec \theta d\theta }{ \tan \theta}(!!!!)=2/5 \int sec\theta d\theta$

Sorum $(!)$ işaretinin olduğu yerde. $\dfrac{2}{5}\int \dfrac{\tan \theta \sec \theta d\theta }{\left| \tan \theta \right| }$ olarak çıkması gerekmiyor mu? Gönül rahatlığıyla nasıl direk bir şekilde $tan\theta$ yazabiliyoruz.
Lisans Matematik kategorisinde (128 puan) tarafından  | 56 kez görüntülendi
Haklısın.  O çözüm biraz özensiz olmuş.

İntegralin hangi aralıkta alınacağını bilmeden mutlak değerden kurtaramayız.
$x=\sec \theta$ donusumu yapiyorsaniz, $0\leq\theta<\frac{\pi}{2}$ olmasi lazim (veya $\pi\leq\theta<\frac{3\pi}{2}$). O aralikta $\tan\theta\geq0$ dir. Ters trigonometric fonksiyon kullanacaginiz icin fonksiyon 1-1 olmali.
çözdüğüm tüm belirsiz integral sorularında (bu tarzda, bilhassa üç dönüşümün kullanıldığı sinx,tanx,secx) kök dışarısına mutlak değersiz çıkarılmış.

Diğer iki durumda ters fonksiyonun tanım kümesi aralık olduğundan mutlak değerden kurtulmak mümkündür.

Sadece bu durumda mutlak değerden kurtulamayız, çünki $\{x:25x^2-4\geq0\}=(-\infty,{-2\over 5}]\cup [{2\over 5},+\infty)$ aralık değil.  $\sec$ fonksiyonu da $[0,{\pi\over2})\cup ({\pi\over2},\pi] $ kümesinde 1-1 dir ve ters fonksiyonu genellikle bu kümede tanımlanır. Ama bu kümede ($5x=2\sec \theta$ ise) $\sqrt{25x^2-4}=2|\tan\theta|$ olur ve bu aralıklarda $\tan$ fonksiyonu farklı işaretlere sahiptir.

19,507 soru
21,235 cevap
71,438 yorum
30,329 kullanıcı