Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
69 kez görüntülendi

Teorem: $(X,\tau),(Y,\tau')$ topolojik uzaylar$,$ $f\in Y^X,$  $a\in X$  ve  $\mathcal{B}(f(a)), \ f(a)$'da yerel baz olsun.

$$f, \ a\text{'da sürekli}\Leftrightarrow (\forall V\in\mathcal{B}(f(a)))(\exists U\in\mathcal{U}(a))(f[U]\subseteq V).$$

 

Not:

$\mathcal{U}(x)=\{U|x\in U\in\tau\}$

Lisans Matematik kategorisinde (10.5k puan) tarafından  | 69 kez görüntülendi
19,468 soru
21,189 cevap
71,133 yorum
27,346 kullanıcı