Buradaki "diklik", sezgisel anlamda bildiğimiz diklik değil tabii. Öklid çarpımıyla analoji yaparak $v\cdot w =0$ ise $v$ ve $w$'ye birbirine dik diyoruz. Bu anlamda bir vektör kendisine dik olabilir, nitekim alterne formlarda eğer karakteristik 2 değilse her vektör kendisine diktir. Önemli olan $$v\cdot w = 0 \iff w \cdot v =0$$ eşdeğerliğidir ve bu eşdeğerlik simetrik ve alterne formlarda geçerlidir elbet. Alterne formlar da simetrik formlar kadar yararlıdır, hatta bunlar dışında gayet yararlı olan Hermitian ve sesquilinear formlar da vardır. Fizikten geometriye, cebire, fonksiyonel analize ve diferansiyel geometriye kadar çok geniş uygulama alanları vardır.
Bu arada, eğer karakteristik 2 değilse, her form bir simetrik ve bir alterne formun toplamı olarak yazılabilir ve bu yazılım biriciktir. Nitekim eğer $f: V \times V \longrightarrow K$ bir form ise, $$f_s(x,y) = \frac{f(x,y)+f(y,x)}{2} \hbox{ ve } f_a(x,y) = \frac{f(x,y)-f(y,x)}{2}$$ tanımlarını yaparsak, $f_s$ ve $f_a$, bu sırayla, simetrik ve alterne formlar olur ve $f = f_s + f_a$ olur. Simetrik ve alterne formlar bu yüzden de önemlidir.
Formlar, Öklid skaler çarpımının genelleştirilmiş halidir ve hepsi cisimde değer alır. Ama daha da geneli vardır: $V_1, \ldots, V_k$ ve $W$ aynı cisim üzerine birer vektör uzayı olsun. Her koordinata göre lineer olan $f:V_1 \times \ldots \times V_k \longrightarrow W$ "multilineer" fonksiyonlar da yerine göre yararlıdır. Bunların da simetrileri ve alterneleri vardır. Bu konuya multilineer cebir denir. Mesela determinant, bir $\det: V \times \cdots \times V \longrightarrow K$ alterne formdur (burada $\dim V =$ kartezyen çarpımı alınan $V$'lerin sayısıdır ve tabii ki sonludur).