Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
532 kez görüntülendi

 Teorem 1. Herhangi bir $ABC$ üçgeninin; çevrel çember merkezi $O$, ortik üçgeni $DEF$, teğet üçgeni $KLM$ olsun. Bu durumda $DEF$ ve $KLM$ üçgenlerinin kenarları karşılıklı olarak birbirine paraleldir. Yani $DE \parallel KL$, $DF \parallel KM$, $EF \parallel LM$.


Teorem 2. Çevrel çemberin yarıçaplarını taşıyan doğrular  $DEF$ üçgeninin kenarlarına (gerekirse uzantılarına) diktir. Yani $OA \perp EF$, $OB \perp DF$, $OC \perp DE$


Teorem 3. $KD$, $LE$, $MF$ doğruları noktadaştır. Bu nokta $X_{25}$ ile gösterilir.


Teorem 4. $ABC$ üçgeninin kenar orta noktaları $P$, $R$, $S$ ise $KP$, $LR$, $MS$ doğruları $O$ noktasında kesişir.


Teorem 5. $X_{25}$ noktası $ABC$ üçgeninin Euler doğrusu üzerindedir.


Notlar ve Yorumlar:
1. Ortik Üçgen: $ABC$ üçgeninin dikme ayaklarını köşe kabul eden üçgendir.
2. Teğet üçgeni: $ABC$ üçgeninin çevrel çemberine $A$, $B$, $C$ noktalarında teğet olan doğruların oluşturduğu üçgendir.
3. Teorem 1-2-4'ün ifadelerine denk olan veya bu teoremleri birer sonuç olarak elde etmemizi sağlayacak teoremler Roger Jhonson 1929, sayfa 172 de verilmiştir.
4. R. Jhonson, Teorem 3'deki noktadaşlığı belirtmemiştir, ancak $DEF$ ve $KLM$ arasındaki homotetiyi görüp homoteti mekezinden kaynaklanan noktadaşlığı görmediği düşünülemez. 
5. Teorem 5, R. Jhonson'da da yoktur. C. Kimbeling'in sitesinde bir özellik olarak ispatsız biçimde verilmiştir. Ben de henüz ispatını bilmiyorum. Bu ispatı yapabilirsek siteye ekleyelim.

6. Euler Doğrusu: Herhangi bir $ABC$ üçgeninde $H$ diklik merkezi, $G$ ağırlık merkezi (centroid), $O$ çevrel çemberin merkezi doğrusaldır. $|HG|=2|GO|$ eşitliği vardır.

 

Teorem 1'in İspatı: $m(\widehat{BAC})=\alpha$ denirse ortik üçgen özelliklerinden $ m(\widehat{EDC}) = m(\widehat{FDB}) = \alpha$ olduğunu görmek kolaydır. Çevre açı-merkez açı ilişkisinden $ m(\widehat{BOC}) = 2\alpha$ olur. $OB \perp KM$ ve $OC \perp KL$ olduğundan $ m(\widehat{BKC}) = 180^\circ -2\alpha$ dır. $|KB|=|KC|$ eşit teğet parçaları olup $ m(\widehat{KBC}) = m(\widehat{KCB})=\alpha$ olur. İç ters açı eşitlikleri sağlandığından $DF \parallel KM$, $DE \parallel KL$ bulunur. Benzer işlemlerle $EF \parallel LM$ bulunabilir.

Teorem 2'nin İspatı: $ABC$ üçgeninin çevrel çemberi, $KLM$ üçgeninin iç teğet çemberi olduğundan $OA \perp LM$ dir. Ayrıca (Teorem 1'den) $EF \parallel LM$ olduğundan $OA \perp EF$ dir. Benzer biçimde $OB \perp DF$, $OC \perp DE$ olduğu gösterilebilir.

Teorem 3'ün İspatı: Teorem 1'e göre  $DF \parallel KM$, $DE \parallel KL$, $EF \parallel LM$ olduğundan $DEF \sim KLM$ üçgenleri homotetiktir. Dolayısıyla homotetik olarak eşlenen noktaları birleştiren $KD$, $LE$, $MF$ doğruları bir noktada (homoteti merkezinde) kesişirler.

Teorem 4'ün İspatı: $BOCK$ bir deltoid olduğundan $OK \perp BC$ olup $OK$, $[BC]$ yi iki eşit parçaya böler. Yani $OK$, $P$ kenar orta noktasından geçer. Benzer şekilde $OL$, $R$ den geçer ve $OM$, $S$ den geçer. Yani $KP$, $LR$, $MS$ doğrularının hepsi $O$ noktasından geçer.

 

Orta Öğretim Matematik kategorisinde (2.6k puan) tarafından 
tarafından düzenlendi | 532 kez görüntülendi
Olimpiyatlara hazırlanan ve geometriye meraklı kişiler için çok güzel teoremler. İspatları da çok açık ve anlaşılır. Site için iyi bir kazanaç diye düşünüyorum. Notlar kısmına üçgenlerde Euler doğrusunun özellikleri/hangi doğru olduğu ilave edilirse çok daha iyi olur diye düşündüm.  Elinize ve zihninize sağlık Lokman Hocam.
20,208 soru
21,732 cevap
73,299 yorum
1,905,711 kullanıcı