Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
494 kez görüntülendi

Aynı küme üzerinde tanımlı iki metriğin düzgün denk olması için gerek ve yeter koşul bu iki metrik uzay arasındaki birim fonksiyon ile bu birim fonksiyonun tersinin (inversinin) düzgün sürekli olmasıdır.

Lisans Matematik kategorisinde (11.5k puan) tarafından  | 494 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

$(\Rightarrow):$ $d_1\sim d_2$  ve  $\epsilon>0$  olsun.


$\left.\begin{array}{rr} d_1\sim d_2 \\  \\ \epsilon>0 \end{array}\right\}\Rightarrow (\exists\delta_1>0)(\exists\delta_2>0)(\forall x\in X)(\forall y\in X)[(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge (d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)]$


$\overset{(1)}{\Rightarrow} (\exists\delta_1>0)(\exists\delta_2>0)\Big{(}\Big{[}(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\Big{]}\wedge \Big{[}(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\Big{]}\Big{)}$


$\overset{(2)}{\Rightarrow} (\exists\delta_1>0)\Big{(}\Big{[}(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\Big{]}\wedge \Big{[}(\exists\delta_2>0)(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\Big{]}\Big{)}$


$\overset{(2)}{\Rightarrow}\Big{[}(\exists\delta_1>0)(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\Big{]}\wedge \Big{[}(\exists\delta_2>0)(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\Big{]}.$


Not: $(1)$ ve $(2)$ nolu geçişlerin gerekçesi: 

$(1)$ nolu geçişin gerekçesi: $\forall x(p(x)\wedge q(x))\equiv \forall xp(x)\wedge \forall xq(x)$

$(2)$ nolu geçişin gerekçesi: $\exists x(p\wedge q(x))\equiv p\wedge \exists xq(x)$

$--------------------------------------------------$

$(\Leftarrow):$ $i, \ (d_1\text{-}d_2)$  ve  $(d_2\text{-}d_1)$  düzgün sürekli ve $\epsilon>0$  olsun.


$\left.\begin{array}{rr} i, \ (d_1\text{-} d_2) \text{ düzgün sürekli} \\  \\ \epsilon>0 \end{array}\right\}\Rightarrow (\exists\delta_1>0)(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\ldots (1)$


$\left.\begin{array}{rr} i, \ (d_2\text{-} d_1) \text{ düzgün sürekli} \\  \\ \epsilon>0 \end{array}\right\}\Rightarrow (\exists\delta_2>0)(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\ldots (2)$


$(1),(2)\Rightarrow (\exists\delta_1>0)(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge (\exists\delta_2>0)(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)$


$\Rightarrow (\exists\delta_1>0)\big{[}(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge  (\exists\delta_2>0)(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\big{]}$


$\Rightarrow (\exists\delta_1>0)(\exists\delta_2>0)\big{[}(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge  (\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\big{]}$


$\Rightarrow (\exists\delta_1>0)(\exists\delta_2>0)(\forall x\in X)(\forall y\in X)\big{[}(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge (d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\big{]}.$

(11.5k puan) tarafından 
tarafından düzenlendi
20,280 soru
21,813 cevap
73,492 yorum
2,481,437 kullanıcı