Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
607 kez görüntülendi

P (x) =x³-mx+2 polinomunun x²-x-1 ile bölünümünden kalan 2x+n olduğuna göre , m+n kaçtır?


Orta Öğretim Matematik kategorisinde (14 puan) tarafından 
tarafından yeniden kategorilendirildi | 607 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

$P(x)=x^3-mx+2$ polinomunun $x^2-x-1$ ile bölümünden kalan $2x+n$ olduğuna göre $P$ polinomunda $x^2$ gördüğün yere $x+1$ yaz ve $2x+n$'e eşitlersen

$$-mx+3=2x+n\Rightarrow m=... \text{ve} \,\ n=...$$ bulunur.

(11.5k puan) tarafından 

Peki $x^2=x+1$ yazmak ne kadar doğru? Bunu her zaman yazabilir miyiz? $x<-1$ içinde yazabilir miyiz?

$$x^3-mx+2=(x^2-x-1).B(x)+2x+n$$ ve biraz daha düşüneyim. Mesela bir $P(x)$ polinomunun $x-a$ ile bölümünden kalanı bulurken $x$ yerine $a$ yazmamız yetiyor. Benzer şekilde buradaki soruyu ele alırsak $x$ yerine $x^2-x-1=0$ denkleminin kökleri olan $$x_{1,2}=\frac{1\mp \sqrt{5}}{2}$$  yazmamız yeterli olacaktır. Bu kökleri göz önüne aldığımızda $$x^2_1=x_1+1$$ ve $$x^2_2=x_2+1$$ olduğunu kolayca görebiliriz. Bu durumda $x^2$ yerine $x+1$ yazmamızın bir mahsuru yoktur. Yani bu durumda $$x_{1,2}=\frac{1\mp \sqrt{5}}{2}$$ olduğundan dolayı $$x<-1$$ olamayacağı açıktır. Sanırım yeterli olmuştur sayın hocam.

20,279 soru
21,810 cevap
73,492 yorum
2,475,902 kullanıcı