Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
2 beğenilme 0 beğenilmeme
457 kez görüntülendi
Akademik Matematik kategorisinde (69 puan) tarafından 
tarafından yeniden etikenlendirildi | 457 kez görüntülendi

1 cevap

2 beğenilme 0 beğenilmeme

Hensel Önsavı'nın en güzel yanlarından biri de kareköklerin varlığı hakkında bilgi vermesi: 

$a\in \mathbb{Z}_p$ elemanının karekökü $\mathbb{Q}_p$ içindedir ancak ve ancak $f(b)=b^2-a\equiv 0$ mod $p$ olacak şekilde bir $b\in \mathbb{Z}_p$ vardır. Buradaki $f$, Hensel Önsavı'nda kullanılan polinom.

Eğer $a$ ve $b$ elemanlarını, $0\leq a_i, b_j<p$ için

$a=a_0+a_1p+a_2p^2+...$

$b=b_0+b_1p+b_2p^2+...$

formunda gösterirsek, $b^2\equiv a$ mod $p$ ancak ve ancak $b_0^2\equiv a_0$ mod $p$.

Şimdi $1-p$ elemanını açalım;

$1-p=1+(p-1)p+(p-1)p^2+(p-1)p^3+...$

Yukarıdaki açıklamaya göre bu elemanın $\mathbb{Q}_p$ içinde karekökü vardır ancak ve ancak $b_0^2\equiv 1$ mod $p$ ve $0\leq b_0<p$ olacak şekilde bir $b_0\in \mathbb{Z}_p$ vardır. 

Açık ki $b_0$ için $p-1$ elemanını seçmek yeterli.

(1.1k puan) tarafından 
tarafından düzenlendi
20,240 soru
21,759 cevap
73,407 yorum
2,078,831 kullanıcı