En genel $sin(u_{(x)})$ çözümü ;
$sin(ax+b)=sin(cx+d)$ gibi bir denklem olsun (olsun dedi ve oldu)
-------------------------------------------------------------------------------------------------------------
$ax_1+b$ : $cx_1+d+2.\pi.k(k\in\mathbb{Z^+})$
$x_1$ : $\dfrac{d-b}{a-c}+\dfrac{2.\pi.k}{a-c}(k\in\mathbb{Z^+})$
-------------------------------------------------------------------------------------------------------------
$ax_2+b$ : $\pi-[cx_2+d]+2.\pi.k(k\in\mathbb{Z^+})$
$x_2$ : $\dfrac{\pi-b-d}{a+c}+\dfrac{2.\pi.k}{a+c}(k\in\mathbb{Z^+})$