Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
2.4k kez görüntülendi

$ a < b < c $

($1+\frac{1}{a}$) . ($1+\frac{1}{b}$) . ($1+\frac{1}{c}$) = $\frac{9}{8}$


olduğuna göre a + b + c toplamı kaçtır ?

Orta Öğretim Matematik kategorisinde (2.1k puan) tarafından  | 2.4k kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

$a=x,\quad b=x+1, \quad c=x+2$  olsun.$(x \in \mathbb Z)$


$\bigg(1+\dfrac{1}{x}\bigg).\bigg(1+\dfrac{1}{x+1}\bigg).\bigg(1+\dfrac{1}{x+2}\bigg)=\bigg(\dfrac{x+1}{x}\bigg).\bigg(\dfrac{x+2}{x+1}\bigg).\bigg(\dfrac{x+3}{x+2}\bigg)=\dfrac{9}{8}$


Sadeleştirme yapılırsa  $x$  bulunur.

(594 puan) tarafından 

$x = 6$ çıkıyor ama sonuca uymuyor. sonuc 75 diyor kitapcıkta

bize toplamlarını sormus $a = x$ demiştik

ardışık tam sayılar dediği için

6+7+8 = 21 cıkıyor ama değil cevap 75

$\dfrac{x+3}{x}=\dfrac{9}{8} \Rightarrow x=24$

teşekkür ederim.. bide bundan önce sordugum bi soru var onada bakabilirmisiniz

17,968 soru
20,627 cevap
66,115 yorum
18,670 kullanıcı