Processing math: 29%
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
1.2k kez görüntülendi

Ei'nin tanimi icin bu soruya bakabilirsiniz.

10ln(x)nEi(x)dx integralini her n0 tam sayisi icin hesaplayiniz.

n=0 durumu icin 10Ei(x)dx=xEi(x)|10+10exdx=Ei(1)e+1. n=1 durumu icin 10ln(x)Ei(x)dx=Ei(x)(xln(x)x)|10+10exln(x)dx+10exdx=Ei(1)(exln(x)Ei(x))|10++e1=Ei(1)+Ei(1)γ+e1=γ+e1.

Lisans Matematik kategorisinde (25.6k puan) tarafından  | 1.2k kez görüntülendi

1 cevap

1 beğenilme 0 beğenilmeme

İntegralimiz :

Λ(n)=10Ei(x)lnn(x)dx

İntegrali kısmi türev ile yazalım.

Λ(n)=lim

Ei(x)=u ve  x^s=dv olacak şekilde kısmi integral alalım.

\Lambda(n)=\lim\limits_{s\to0}\frac{\partial^n}{\partial{s}^n}\frac{Ei(x)x^{s+1}}{s+1}\Bigg|_0^1-\frac{1}{s+1}\int_0^1\:e^x\:x^s\:dx

\Lambda(n)=\lim\limits_{s\to0}\frac{\partial^n}{\partial{s}^n}\frac{Ei(1)}{s+1}-\frac{1}{s+1}\int_0^1\:e^x\:x^s\:dx

e^x ifadesini taylor ile açalım ve integrali alalım.

\Lambda(n)=\lim\limits_{s\to0}\frac{\partial^n}{\partial{s}^n}\frac{Ei(1)}{s+1}-\frac{1}{s+1}\int_0^1\:\sum_{k=0}^\infty\frac{x^{s+k}}{k!}\:dx

\Lambda(n)=\lim\limits_{s\to0}\frac{\partial^n}{\partial{s}^n}\frac{Ei(1)}{s+1}-\frac{1}{s+1}\sum_{k=0}^\infty\frac{1}{k!}\int_0^1\:x^{s+k}\:dx\Lambda(n)=\lim\limits_{s\to0}\frac{\partial^n}{\partial{s}^n}\frac{Ei(1)}{s+1}-\frac{1}{s+1}\sum_{k=0}^\infty\frac{1}{k!}\:\frac{x^{s+k+1}}{s+k+1}\Bigg|_0^1\Lambda(n)=\lim\limits_{s\to0}\frac{\partial^n}{\partial{s}^n}\frac{Ei(1)}{s+1}-\frac{1}{s+1}\sum_{k=0}^\infty\:\frac{1}{k!(s+k+1)}Türevi alalım.\Lambda(n)=\lim\limits_{s\to0}\:(-1)^n\:n!(s+1)^{-n-1}Ei(1)\to\\-(-1)^n\:n\:(s+1)^{-n-1}\sum_{k=0}^\infty\frac{1}{k!(s+k+1)}-(-1)^n\:n!\:\sum_{k=0}^\infty\frac{1}{k!(s+k+1)^{n+1}}s yerine 0 verelim.\Lambda(n)=(-1)^n!\:n!\:Ei(1)-(-1)^n\:n!\sum_{k=0}^\infty\frac{1}{(k+1)!}-(-1)^n\:n!\sum_{k=0}^\infty\frac{1}{k!(k+1)^{n+1}}Sadeleştirelim.\Lambda(n)=(-1)^n!\:n!\:Ei(1)-(-1)^n\:n!\underbrace{\sum_{k=0}^\infty\frac{1}{(k+1)!}}_{\large\:e-1}-(-1)^n\:n!\sum_{k=0}^\infty\frac{1}{k!(k+1)^{n+1}}\color{#A00000}{\boxed{\Lambda(n)=\int_0^1\:Ei(x)\:\ln^n(x)\:dx=(-1)^n\:n!\bigg(Ei(1)-e+1-\sum_{k=0}^\infty\frac{1}{k!(k+1)^{n+1}}\bigg)}}Sondaki seri istenilirse hipergeometrik fonksiyon ilede yazılabilir.\color{#A00000}{\boxed{\Lambda(n)=\int_0^1\:Ei(x)\:\ln^n(x)\:dx=(-1)^n\:n!\bigg(Ei(1)-e+1-{}_nF_n\Bigg(\begin{array}\,1,1,1\cdots1\\2,2,2\cdots2 \end{array}\Bigg|1\Bigg)\:\Bigg)}}
(1.1k puan) tarafından 
tarafından düzenlendi

Toplam sembolünü hipergeometrik fonksiyon ile yazabiliriz.Ama bir işe yaramaz.

\sum_{k=0}^\infty\frac{1}{k!(k+1)^{n+1}}={}_nF_n \Bigg(\begin{array}\,1,1,1\cdots1\\2,2,2\cdots2 \end{array}\Bigg|1\Bigg)

ise yaramaz derken? istedigim eklediginli haliydi.

integrali kismi turevle nasil yazabiliriz?

\mbox{Ei}(x) yazınca işe yarıyor ya! O da yarar.

Cevaba hipergeometrik fonksiyonlu halini de ekledim.İşe yaramıyor dememin nedeni ikisinin de kolayca hesaplanamıyor olması.

20,333 soru
21,889 cevap
73,624 yorum
3,094,260 kullanıcı