Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
250 kez görüntülendi
Düzlemi $n$ adet çemberle en fazla kaç bölgeye ayırabilirsiniz? Çemberlerin eş olması sonucu değiştirir mi?
Orta Öğretim Matematik kategorisinde (3k puan) tarafından 
tarafından yeniden etikenlendirildi | 250 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
Düzlemdeki $n$ çemberin düzlemi ayırdığı maksimum alt bölge sayısını $B(n)$ ile gösterelim.

$B(0)=1, B(1)=2, B(2)=4, B(3)=8$ olduğunu görebiliriz. Bir çember diğer bir çemberi kestiğinde bölge sayısını $2$ arttırdığını ve bu artışın iki çemberin kesim noktalarının sayısı olan $2$ ye eşit olduğunu gözlemleyelim. Buna göre $n$ inci çember kendisinden önceki $n-1$ çember ile  en çok $2(n-1)$ noktada kesişecektir; yani $n-1$ çemberin oluşturduğu bölge sayısına $2(n-1)$ bölge daha eklenmelidir. Matematiksel olarak $n$ inci çember çizildiğinde oluşan bölge sayısı için $$B(n)=B(n-1)+2(n-1)$$ bağıntısını yazabiliriz. Bağıntıyı $2,3,4,...,n$ değerleri için yazıp toplarsak  $$B(n)=B(1)+\sum 2(n-1)=n^2-n+2$$  bulunur.

Aşağıdaki gibi bir konfigürasyon düşünülürse çemberlerin eş seçilmesi sonucu değiştirmez.

$r$ yarı çaplı $n$ tane çember verilsin. Çemberlerin hepsinin birbiriyle kesişimini garantiliyebilmek için çemberlerin merkezlerini $R$ yarı çaplı bir çember üzerinde seçelim.

$R\gt r$  ise sadece ardışık çemberler birbiriyle kesişir. Özel olarak $R=\dfrac{2} {\sqrt{3}}r $ durumunda üç çember birbirine teğettir.

$R=r$ alırsak aynı noktadan geçen  çemberler oluşacağından maksimum kesişim noktası sayısı, yani maksimum bölge sayısı şartı sağlanmaz.

$R\lt r$ olacak şekilde seçilirse her bir çember diğer çemberlerle kesişeceğinden maksimum bölge sayısı elde edilir.
(3k puan) tarafından 
tarafından düzenlendi
20,279 soru
21,810 cevap
73,492 yorum
2,475,681 kullanıcı