Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
952 kez görüntülendi

$\frac{x}{(x+y) }$ -  $\frac{y}{(y-x)}$ = 6

$\frac{x}{y}$ oranının alabileceği değerlerin çarpımı? 

Standart işlem ile ancak 

$\frac{x^2}{y^2}$ = $\frac{7}{5}$

bu sonuca ulaşabiliyorum. 

Orta Öğretim Matematik kategorisinde (18 puan) tarafından 
tarafından yeniden kategorilendirildi | 952 kez görüntülendi

$\frac{x^2}{y^2}=\left(\frac xy\right)^2$ değil mi?

Evet hocam,

$\frac{x}{y}$ nin karesi $\frac{7}{5}$ 

Köklü ifade çıkmaz mı sonuç? 

Buradan sonrasında aydınlanma yok, ancak bu kadar

Köklü ifade çok anlaşılmaz bir şey değil.

Soruda çözümler değil sadece çözümlerin çarpımını soruluyor. 

İkinci derece bir denklemin çözümlerinin çarpımı, ÇÖZÜMLERİ BULMADAN, bulamaz mıyız?

Ya da kökleri de elde ederek devam ediniz: $\dfrac{x}{y} = \sqrt{\dfrac{7}{5}}$ veya $\dfrac{x}{y} = -\sqrt{\dfrac{7}{5}}$ diye elde edilir. Buradan $- \sqrt{\dfrac{7}{5}} \cdot \sqrt{\dfrac{7}{5}}$ işleminin sonucunu bulabilirsiniz sanırım.

Hocam - 7/5 şıklarda yok sanırım şıklar hatalı. 

Denklemi baştan sona inceledim. İşlem hatanız var mı acaba dedim. Gerçekten $$ \dfrac{x^2}{y^2} = \dfrac{7}{5}$$ biçimine dönüşüyor. O halde şıkları yanlış verilmiş. 

Teşekkürler hocam

20,284 soru
21,823 cevap
73,508 yorum
2,570,414 kullanıcı