Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1k kez görüntülendi

Yerel maksimum noktası için;

f'(x)= xkare+2x=0 

x=0 ve x=-2 gelir.

Tablo yaptığımızda yerel maksimum noktasının apsisinin -2 olduğunu görürüz .Ordinatının ise fonksiyonun kendisinde -2yi yerine koyunca -4 olduğunu görürüz .

Bundan sonrasını getiremedim .

Yardımcı olur musunuz?

Lisans Matematik kategorisinde (11 puan) tarafından 
tarafından düzenlendi | 1k kez görüntülendi

O noktadan ve orijinden geçen doğrunun eğimi kaç olur?

Parabolun hangi noktasındaki teğet aynı eğime sahiptir?

 doğrunun eğimi teğet oldukları için parabolün eğimine eşittir.Parabolün eğimi 2 dir. Diğer sorunuzun cevabını bulamadım.

Parabolun eğimi (doğru olmadığı için) olmaz. 

Her noktasındaki teğetinin eğimi farklıdır. 

Bir noktadaki teğetinin eğiminin nasıl bulunacağını biliyor musun?

Anladım. O zaman teğet olan doğrunun eğimi parabolün o noktasındaki eğimine eşittir diyebilir miyiz ?

Hayır , parabolün  bir noktasındaki teğetinin eğiminin nasıl bulunacağını bilmiyorum.




Çok teşekkürler.

1 cevap

0 beğenilme 0 beğenilmeme

Önce verilen fonksiyonun extremum noktalarını bulalım.

f(x)=2x(x+1)x2(x+1)2=0 dan x2+2x=0 ve fonksiyon x=0,x=2 apsisli noktalarda extremum yapıyormuş. Eğer bir değişim/işaret tablosu yapılırsa x=2 için f(2)=4 maksimum değer olur.  

Demek ki (0,0),(2,4) noktalarından geçen doğru parabole teğetmiş. Önce bu doğrunun eğimini ve sonra da denklemini bulalım.

m=0(4)0(2)=2 olur. Bu doğrunun denklemi : y=2x  dir. Şimdi parabolün eğimi iki olan noktasını bulmalıyız.

g(x)=2x+3=2x=1/2 olur. Apsisi 1/2 olan nokta hem doğrunun hem de parabolün üzerinde olduğundan 

y=2.12=1 olup bu değer parabolü sağlar 1=(12)2+312+aa=1/4 bulunur

(19.2k puan) tarafından 

Anladım .Çok teşekkür ederim .

Önemli değil. İyi çalışmalar.
20,333 soru
21,889 cevap
73,624 yorum
3,108,902 kullanıcı