Ben genel yontemi verecegim. Zaten sorunun cevabini buradan gormek kolay.
Sayiyi $$abcd \cdot 10 +5$$ olarak yazalim. Sonucta $abcd$ denilen $$1000,1001,\cdots,9999$$ sayilarindan biri olabilir. Peki bu sayilarin $18$ ile bolumunden kalan ne olur? $$10,11,12,\cdots,17,0,1,2,\cdots$$ olarak gider. Cok onemli degil. Onemli olan $$0,1,2,3,\cdots,17$$ olarak tum kalanlari verir. Bunlari $10$ ile carpip $5$ ekleyecegiz ve de $18$ ile kalanina bakacagiz. $$5,15,7,17,9,1,11,3, 13,5,15,7,17,9,1,11,3, 13$$ olarak gider.
Burada moduler aritmetik bilgisi onemli. $(10,18)=2$ oldugundan $10k \mod 18$ sadece cift kalanlari icerir ve $$10k+5 \mod 18$$ sadece tekleri icerir.
Genel olarak tum kalanlari elde ediyorsan $$ak+b \mod n$$ icin elde edilecek kalan sayisi $$\frac{n}{(n,a)}$$ olur. Burada $(n,a)$ denilen $a$ ile $n$ tam sayilarin en buyuk ortak boleni olur.
Eger bize bir sinirlama verirse sayi $(a,n)$ birimlik arttigindan o sayiya kadar kac tane var, hemen bulabiliriz.