Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1.7k kez görüntülendi

Nasil bir yontemi var aciklayabilir misiniz?


Orta Öğretim Matematik kategorisinde (11 puan) tarafından 
tarafından yeniden kategorilendirildi | 1.7k kez görüntülendi



Soylemezler burada POROfesyonel adamlar sonucta

@Amateur146 Burası ortaklık üzerinden işleyen bir platform. Karizması çizilir dediğiniz kişilere, kendiniz de dahilsiniz. Yanıtı, ya da yanıt olmasa da soru hakkındaki düşüncenizi siz de yazabilirsiniz. Buranın amacı, sorusunu çözemeyen kişiye, başka birisinin sorunun yanıtı vermesini sağlamak değil. Aksine, sorusu olan kişinin, sorusunun cevabını bulmasını, dahası, ilerde karşılaşacağı benzer sorulara buraya ihtiyaç duymadan yanıt bulmasını sağlamak.

Gelelim soruya.

@Tgcetpc:

1- Bu soru akademik kategoride yer alacak bir soru değil. Ortaöğretim sorusu. Soruları, kategorisine dikkat ederek sormazsak, bu site kısa zamanda tam bir keşmekeş olur ve kullanılmaz hale gelir. Ben bu sorunun kategorisini değiştireceğim, siz de bundan sonra daha dikkatli davranın lütfen.

2- Ameteur146'ya verdiğim yanıtta da dediğim gibi, buranın amacı, soruların yanıtınının hazırlop elde edilmesi değil. Aksine, amaç, öğrenmek isteyen kişilerin, başkalarının fikirlerinden yararlanması. Bunun için elbette birilerinin yanıt yazması gerek. ANCAK BİR ŞARTLA. Buradaki pek çok kimsenin düşüncesi, öğrenmenin, zorlanmak ve kişisel çabayla gerçekleşeceği yönünde. Yani, öncelikle soruyu siz çözmeye çalışmalısınız. Buraya yazarken de, sizin ne düşündüğünüzü ve nerede takıldığınızı yazmanız beklenmekte. Örneğin, çözmek için ne düşündüğünüzü yazmış olsanız, inanın ki aradığınız yanıt çok daha hızlı gelir:

Tamam bende aynısını yaptım cevap veren olmadı 

Peki bu yukarıdaki soruya sen neden yanıt vermiyorsun? Yanıtı bilmiyorsan bile, fikrini söyleyip, soruyu soran kişiyle beraber de çözebilirsiniz.

Soru: Sözünü ettiğin sorunun linki ne? Ben göremiyorum öyle bir soruyu.
Not: Üçgenlerle ilgili sorunun kategorisini değiştirmen gerek, akademik değil, orta öğretim sorusu.

Ben size mesaj atamıyorum atabilsem

Neden mesaj atamiyorsunuz? Sitede bir sorun mu var? Benim bildiğim herkes herkese mesaj atabiliyordu. Değişti mi?

Sana mesaj atabileceğim ulasabilecegim bir yer varmi rica etsem senden ozel mesaj gonder cikmiyorda profilinde lutfrn

Ben size mesaj gönderdim, elinize ulaştı mı?

Aynı sorun (mesaj atamama) bana da olmuştu, sonra düzeldi kendi kendine. Bana gelen mesajları okuyabiliyor ama cevap veremiyordum.

Ne demek istediğinizi anlayamadım. Kamuya açık bir alanda kendinizi bu şekilde mi dlie getirmek istiyorsunuz?

@Tgcetpc, konu sizden uzaklasti su an. Eger neler denediginizi sorunuza eklerseniz bir cevap paylasmayi dusunuyorum. 

Alt sınırı 6, üst sınırı n olan ve formatı 2k-1 olan bir sigma işareti kullanarak çözebilirsiniz. Sanırsam 19 çıkıyor n.

1 cevap

0 beğenilme 0 beğenilmeme

$ 2n-1=11 $ diye başladım alt sınırı bulmak için buradan $ n=6 $ çıktı ve sayılarımız da $ 2k-1 $ formunda o zaman $  \sum_{k=6}^{n}2k-1=336 $ 'yı hesaplamamız gerek. Buradan sonra $ 2.\sum_{k=6}^{n}k-(n-6+1).1=336 $ diyebiliriz ve sigmalı ifadeyi ''gauss toplamından'' açabiliriz Burada indis değiştirme de kullanılabilir ama ben ilk terim ve son terimi toplayıp terim sayısıyla çarpıp 2'ye böldüm. (İşlem hatası yapmış olabilirim) $ \frac{2.(n+6).(n-6+1)}{2}-(n-6+1).1=(n+5).(n-5)= 336 $ Buradan da $ n^{2}-25=336 $ ve $ n=\pm 19 $ çıkar bu sorudaki amaçlarımız için $ n=+19 $ bulunur.

(895 puan) tarafından 

Bunun dışında 2k formatındaki yazılı sayılar alınıp  (12+14+16+...+2n) bunlardan terim sayıları kadar bir de çıkarılabilir yani $ 2.(6+7+8+...+n) -1.(n-6+1) $ de yapılabilir ki bu da $ (n+6).(n-6+1) -1.(n-6+1) $ de olabilir.

Yorumda 1 lerin sayısı hatalı hesaplanmış. Yine çözümdeki gibi (parantez içindeki terimlerin sayısı kadar)  $n-6+1=n-5$ olmalı.

Sağolun hocam:) kafam bulanmış

20,286 soru
21,825 cevap
73,513 yorum
2,586,681 kullanıcı