Türevi 0 olup da ,sabit olmayan fonksiyon var mıdır? İspatlayarak gösteriniz.

0 beğenilme 0 beğenilmeme
179 kez görüntülendi


29, Eylül, 2016 Lisans Matematik kategorisinde Anil (7,729 puan) tarafından  soruldu
30, Eylül, 2016 Anil tarafından düzenlendi

ta?            

Basligi dil bilgimize uyun duzeltirseniz...

1 cevap

0 beğenilme 0 beğenilmeme
 
En İyi Cevap

$$f(x)=\text{sgn } x$$ kuralı ile verilen $$f:\mathbb{R}\setminus\{0\}\rightarrow \mathbb{R}$$ fonsiyonu sabit fonksiyon olmamasına karşın $$f'(x)=0.$$

29, Eylül, 2016 murad.ozkoc (9,032 puan) tarafından  cevaplandı
30, Eylül, 2016 Anil tarafından seçilmiş

$\mathbb R\to \mathbb R$  olan bu tarz fonksiyon var mıdır? "gidiş - varış kümelerini kısıtlamadan"

Sence?         

Basamak fonksıyonu geldı aklıma ,ama onda da turevlenemeyen noktalar var, sanırım soruda bunu acıklamalıydım, her tanımlı noktasında turevlenebılen diye.

$$f:\mathbb{R}\rightarrow\mathbb{R}$$ fonksiyonu türevli ve türevi $0$ ise $f$ fonksiyonu sabit fonksiyon olmak zorundadır. 

$f:\mathbb{R}\rightarrow\mathbb{R}$ fonksiyonu türevli ise süreklidir. $x,y\in\mathbb{R}$  ve  $x<y$ olsun. $f$ sürekli olduğundan $f$ fonksiyonunun $[x,y]$ aralığına kısıtlanışı olan $$f:[x,y]\rightarrow \mathbb{R}$$ fonksiyonu da süreklidir ve $f:\mathbb{R}\rightarrow\mathbb{R}$ fonksiyonu türevli olduğundan $$f:(x,y)\rightarrow\mathbb{R}$$ fonksiyonu da türevlidir. O halde Ortalama Değer Teoremi uyarınca $$\frac{f(x)-f(y)}{x-y}=f'(c)$$ olacak şekilde $(x,y)$ aralığında en az bir $c$ elemanı vardır. Fonksiyonun türevi $0$ $(f'(x)=0)$ olduğundan her $x,y\in\mathbb{R}$ için $$f(x)-f(y)=0$$ yani $$f(x)=f(y)$$ olur. Bu da $f$ fonksiyonunun sabit bir fonksiyon olmasını gerektirir.

Sonuç olarak gerçel sayılardan gerçel sayılara tanımlı ve türevi $0$  olan fonksiyon sabit fonksiyondan başka bir fonksiyon olamaz.

...