Her noktada bir taraftan türevi olup diğer taraftan türevi olmayan fonksiyon var mıdır?

6 beğenilme 0 beğenilmeme
418 kez görüntülendi
Reel sayıların bir alt aralığından reel sayılara tanımlı bir fonksiyonumuz olsun. Bu fonksiyonun tanım aralığındaki her noktada (örneğin) sağdan türevleri var ve artan ancak soldan türevleri olmasın. Böyle bir fonksiyon bulunabilir mi?
25, Ocak, 2015 Akademik Matematik kategorisinde ayhandil (200 puan) tarafından  soruldu

Tam bir çözümünü bulamadığım için yorum eklemek istiyorum.


Gerçel sayılar kümesi üzerinde parçalı olarak tanımlı şu $f$ fonksiyonuna bakalım:

$x<1$ iken $f(x)=2x$ ve $x\geq 1$ iken $f(x)=2x+1$.

Bu $f$ fonksiyonu artandır, $f'(1^+) = 2$ dir ve $f'(1^-) $ yoktur. Bu fonksiyon, tanım kümesindeki her değer için sağdan türevlidir. $x=1$ noktasında soldan türevsizdir. Fonksiyon için başka kritik noktalar da oluşturarak soldan türevsiz olduğu noktaların sayısını artırabiliriz. Hatta sayılabilir sonsuz çoklukta soldan türevsiz nokta olacak biçimde $f$ fonksiyonları kurgulamak zor değildir.


Problem, bizden tanım kümesindeki bütün $x$ gerçel sayıları için soldan türevsiz fonksiyon bulmamızı istiyor. Bunun için mümkün bir örnek bulabileceğimizi sanmıyorum. Bunu ispatlayabilsek ilginç olurdu. Uygun örnek bulunabiliyorsa daha da ilginç olurdu.

...