$\star\star$ $(-\infty,\infty)$ aralığında türevlenebilir herhangi bir fonksiyonun türevi $y=|x|$ olabilir mi?

0 beğenilme 0 beğenilmeme
117 kez görüntülendi


$\star\star$  $(-\infty,\infty)$   aralığında türevlenebilir herhangi bir fonksiyonun türevi $y=|x|$ olabilir mi?


image

türevi $|x|$ olan bir fonksiyon aşşağıdaki gibi olabilir mi? olamaz ise neden olamaz?

image

4, Mayıs, 2016 Lisans Matematik kategorisinde Anil (7,732 puan) tarafından  soruldu
4, Mayıs, 2016 Anil tarafından düzenlendi

1 cevap

1 beğenilme 0 beğenilmeme

$f(x)=\begin{cases}\frac{x^2}2\quad x\geq0\textrm{ ise}\\ -\frac{x^2}2\quad x\leq0\textrm{ ise}\end{cases}$

(her sürekli fonksiyon için (biraz farklı şekilde) yapılabilir)

4, Mayıs, 2016 DoganDonmez (3,626 puan) tarafından  cevaplandı

hocam ben de aynen boyle yaptım ama bu fonksıyon 0 da turevlenebılır olmadıgından $(-\infty,\infty)$ dekı her noktada turevlenebılmemış olur dolayısıyla cevap olamaz değil midir?

Bu fonksiyon 0 da türevlenebiliyor, türevi de 0 (Sağdan ve soldan türevleri incelenerek bulunabilir)

$x^3$ gıbı oluyor haklısınız .Aslında sıkıntı yoktu ama kitap cevaba hayır demış, hata yapmışlar.

Cevap için teşekkürler.

...