Herhangi büyük bir tam sayının faktoriyelinin içinde kaç tane "p" asal sayısı olduğunu bulmak için neden sürekli aynı sayıya bölüp "bölüm"leri topluyoruz?

1 beğenilme 0 beğenilmeme
66 kez görüntülendi

Herhangi büyük bir tam sayının faktoriyelinin içinde kaç tane "p" asal sayısı olduğunu bulmak için neden sürekli aynı sayıya bölüp "bölüm"leri topluyoruz?


ÖRNEK:

$120!=2^n.A$


120/2=60

60/2=30

30/2=15

15/2=7+1/2

7/2=3+1/2

3/2=1+1/2


tam kısımları toplarsak 60+30+15+7+3+1 diye

n=116 bulunuyor ama neden böyle yapıyoruz? öklid algorıtmasının bır sonucumu desem ...yok? burada faktorıyel var.

21, Nisan, 2016 Orta Öğretim Matematik kategorisinde Anil (7,700 puan) tarafından  soruldu
21, Nisan, 2016 Anil tarafından düzenlendi

Aslında yapılan $[|\frac{120}{2}|]+[|\frac{120}{2^2}|]+[|\frac{120}{2^3}|]+...+[|\frac{120}{2^6}|]$ dır. yani $120$ içinde bulunan $2$ 'nin kuvvetlerinin sayısını bulmak ve toplamak. Sizin söylediğiniz ise zeki bir matematikçinin bulduğu bir kolaylık...

anladım peki o kolaylıgı nasıl yapabılırız sayım hocam.

1 cevap

1 beğenilme 0 beğenilmeme
 
En İyi Cevap

Bu soruda ispatlanmistir.

21, Nisan, 2016 Sercan (23,698 puan) tarafından  cevaplandı
1, Aralık, 2016 Anil tarafından seçilmiş
...