$a$ ve $b$ birer pozitif tamsayı olsun. $(a^2+b^2)$'yi $(a+b)$'ye böldüğümüzde bölüm $q$ kalan $r$ ise $$q^2+r=1977$$ eşitliğini sağlayan $(a,b)$ ikilileri nelerdir?

3 beğenilme 0 beğenilmeme
184 kez görüntülendi
2, Şubat, 2015 Orta Öğretim Matematik kategorisinde Salih Durhan (1,254 puan) tarafından  soruldu
Hocam cevap için çok bekletir misiniz merak ettim?

2 Cevaplar

1 beğenilme 0 beğenilmeme
q<a+b

r<a+b

q^2+r=1977 eşitliğinden dolayı, karesi 1977' den küçük veya eşit olan en büyük sayının q<=44  koşulunu sağlaması gerektiği görülür.

q=44 icin r=41 olur.

O halde

a^2+b^2=(a+b).q+r -------> a^2+b^2=(a+b).44+41

(a+b)^2-44(a+b)=2ab+41

(a+b). (a+b-44)=2ab+41

Bu denklemden a=50 ve b=7 buldum.

q<44 değerleri için r'nin çok büyüdüğü ve eşitliği sağlamadiğı görülür.

Sonuç olarak (50,7) ikilisi dışında başka bir değer bulamadım.  

Çözümümünde pek tatmin edici olduğu söylenemez.  

Soruya dikkat çekmek adına paylaşıyorum,

Başka çözümleri sabırsızca bekliyorum.
4, Şubat, 2015 temelgokce (940 puan) tarafından  cevaplandı
1 beğenilme 0 beğenilmeme


Warning: imagecreatetruecolor() [function.imagecreatetruecolor]: Invalid image dimensions in /home/salih1/public_html/qa-include/util/image.php on line 145

Warning: imagecolorallocate() expects parameter 1 to be resource, boolean given in /home/salih1/public_html/qa-include/util/image.php on line 146

Warning: imagefill() expects parameter 1 to be resource, boolean given in /home/salih1/public_html/qa-include/util/image.php on line 147
image

7, Şubat, 2015 yavuzkiremici (1,753 puan) tarafından  cevaplandı

Teşekkürler Yavuz Hocam...

rica ederim bir de latex sorununu çözebilirsem :)

Yavuz Hocam bu "http://webdemo.myscript.com/#/demo/equation" linkin yardımı dokunabilir.

Bu arada, ben son vuruşu yapamamışım :). Tam kareye dönüştürmeyi düşünememişim. Oysaki ne kadar kolaymış. Tekrar sağ olun...

Yok hocam işin önemli kısmını siz yapmışsınız ben sadece tamamlamış oldum teşekkür ederim öneri için

...