Matematikteki önemli sanılar nelerdir?

0 beğenilme 0 beğenilmeme
658 kez görüntülendi

sanı: conjecture

---

Amacım bir çeşit bilgi paylaşımı yapmak. Daha yararlı olması için sanının önermesini (statement) olduğu gibi yazmayalım, az da olsa tanımlarla, örneklerle açıklamaya çalışalım.

---

Yorumdan öte bir konu olduğu için kategorinin serbest değil, akademik olması gerektiğini düşündüm.

12, Ekim, 2015 Akademik Matematik kategorisinde Enis (1,075 puan) tarafından  soruldu

5 Cevaplar

0 beğenilme 0 beğenilmeme

Herkes $2+2=4$ saniyor.

12, Ekim, 2015 Sercan (23,972 puan) tarafından  cevaplandı
16, Nisan, 2017 Anil B.C.T. tarafından yeniden gösterildi
ya nedir $2+2$ 
0 beğenilme 0 beğenilmeme

Goldbach Sanısı

2' den büyük her çift sayı iki asal sayının toplamı şeklinde yazılabilir.

Herhalde en popülerlerindendir.

4 = 2 + 2

6 = 3 + 3

8 = 5 + 3 =

48 = 41 + 7 = 37 + 11 = 31 + 17 =29 + 19 

72 = 67 + 5 



12, Ekim, 2015 comertpay.emir (25 puan) tarafından  cevaplandı
0 beğenilme 0 beğenilmeme

Fetmatın n teoremi $x^n+y^n=z^n$ fakat rieman olmak üzere çok büyük sayılara kadar denenmesine rağmen kanıtlanması hala hipotez kabul edilmesi düşündürücuü

12, Ekim, 2015 babyşişko (51 puan) tarafından  cevaplandı
16, Nisan, 2017 Anil B.C.T. tarafından yeniden gösterildi

sizce hayla hipotez kabul edilmesi nedeni nedir

Fermat'ın teoremi 1995 yılında kanıtlandı.

https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem

1 beğenilme 0 beğenilmeme

Mordell-Weil Savı: $E$, $\mathbb{Q}$ üzerinde bir eliptik eğri olsun. Bu durumda $E(\mathbb{Q})$ sonlu üretilmiş (finitely generated) değişmeli (abelian) bir gruptur.

Bu sava göre, $$E(\mathbb{Q})\cong T\times \mathbb{Z}^r$$ yazmak mümkün. Buradaki $T$, $E(\mathbb{Q})$ grubunun burkulma (torsion) altgrubu. Bu durumda, $E$ eliptik eğrisinin mertebesi (rank) $r$ olarak tanımlanır.

Örnek 1: $E:y^2=x^3-x$ eliptik eğrisinin mertebesi $0$'dır.

Örnek 2: $E:y^2=x^3-17x$ eliptik eğrisinin mertebesi $2$'dir.

Örnek 3: $E:y^2=x^3-226x$ eliptik eğrisinin mertbesi $3$'tür.

Sanı 1: Rastgele bir $r=0,1,2,\dots$ için, mertebesi $r$ olan bir eliptik eğri vardır.

Sanı 2: Bir $p\equiv 5(\text{mod}8)$ asalı için $E:y^2=x^3+px$ eliptik eğrisinin mertebesi $1$'dir.


12, Ekim, 2015 Enis (1,075 puan) tarafından  cevaplandı
12, Ekim, 2015 Enis tarafından düzenlendi
0 beğenilme 0 beğenilmeme
Lang-Trotter Sanısı
$\mathbb{Q}$ üzerinde karmaşık çarpımı olmayan bir $E$ eliptik eğrisi alalım. Bu durumda $x\to\infty$ iken $E$'ye bağlı öyle bir $c>0$ sabiti vardır ki, $$\#\{p<x:E/\mathbb{F}_p\ \text{süpertekil}\}\sim\frac{c\sqrt{x}}{\text{log}x}$$ olur.
---
karmaşık çarpım: complex multiplication, süpertekil:supersingular
---
S. Lang & H. Trotter. Frobenius distributions in $\text{GL}_2$-extensions. Springer-Verlag, Berlin, 1976. Distribution of Frobenius automorphisms in $\text{GL}_2$-extensions of the rational numbers, Lecture Notes in Mathematics, Vol 504.
17, Kasım, 2015 Enis (1,075 puan) tarafından  cevaplandı
...