İkinci kuantumlama da neyin nesidir?

1 beğenilme 0 beğenilmeme
135 kez görüntülendi

Başlıktaki ve aşağıdakinin dışında hep teorem ve savların kanıtını soruyorum.

Tanım (Fock uzayı): $\mathcal{H}$ bir Hilbert uzayı (farklı ise yerine $\mathcal{H}_\nu$) ve $H$ bir tek parçacık Hamilton işlemcisi olsun. Ayırt edilemez fermiyonlar $\psi\in\mathcal{H}$ için  $\mathcal{H}^{(N)}:=\bigwedge_{\nu=0}^{N}\mathcal{H}$ (ters simetrik), ayırt edilemez bozonlar için ise $\mathcal{H}^{(N)}:=\frac{1}{\sqrt{N!}}\displaystyle\sum_{P\in S_N}P (\bigoplus_{\nu=0}^{\infty}\mathcal{H} )$ -$S_N$ simetrik grup- (simetrik) ve $\mathcal{H}^{(0)}:=\mathcal{C}$ olmak üzere Hilbert uzayı $\mathcal{F}:=\bigoplus_{N=0}^{\infty}\mathcal{H}^{(N)}$ ve iç çarpım $\langle\psi,\psi\rangle:=\displaystyle\sum_{N=0}^{\infty}\langle\psi^{(N)},\psi^{(N)}\rangle$'dır ve ona (fermiyon/bozon) Fock uzayı adı verilir. Buradan itibaren sadece fermiyonları inceleyelim.

Sav:
$\langle\psi,\psi\rangle$ üniterdir ve bundan $\mathcal{F}$'nin iç çarpımını sonlu kılan dizilerin Hilbert uzayı olduğu çıkar.

Tanım: $f\in\mathcal{H}$, $e_1,e_2,e_3,...$ $\mathcal{H}$'nin ortonormal tabanını oluştursun. $e_{1}\wedge ...\wedge e_{N}:=\sum_{\pi\in\gamma_N}(sgn\pi)e_{\pi_1}\otimes...\otimes e_{\pi_N}$.

Sav: $e_{1}\wedge ...\wedge e_{N}\in \mathcal{H}^{(N)}$ $\mathcal{H}^{N}$'nin bir tabanıdır.

$a^{*}(f)e_{\nu_1}\wedge ...\wedge e_{\nu_N}:=f\wedge e_{\nu_1}\wedge ...\wedge e_{\nu_N}+...$ (...= doğrusal olarak bütün doğrusal bileşimlere tamamla).

Soru: Doğrusal bir işlemciyi bir Hilbert uzayı üzerinde tanımlamak için onu uzayın tabanında tanımlamak yeterli midir?
 
Tanım (Yaratma ve yoketme işlemcileri): $a^{*}(e_l)\frac{1}{\sqrt{N!}}e_{1}\wedge ...\wedge e_{N}:=\frac{1}{\sqrt{(N+1)!}}e_{1}\wedge ...\wedge e_{N}$. $\psi\in\mathcal{F}$,  $q\in\mathbb{N}$ spin durumu sayısı olsun ve Hilbert uzayını $\mathcal{H}=L^{2}(\mathbb{R}^{N})\otimes\mathbb{C}^{q}$ olarak seçelim. Yeri ve spini birlikte $x:=(\xi,\sigma)$ olarak yazalım. O zaman yoketme işlemcisi $(a(f)\psi)^{(N)}(x_1,...x_N):=\frac{1}{\sqrt{N}}\displaystyle\sum_{j=1}^{N}(-1)^{j+1}f(x_j)\psi^{(N-1)}(x_1,...x_{j-1},x_{j+1},...,x_N)$, yaratma işlemcisi de $(a^*(f)\psi)^{(N)}(x_1,...x_N):=\frac{1}{\sqrt{N+1}}\displaystyle\sum_{\sigma=1}^{q}\int_{\mathbb{R}^{N}} dx \bar{f(x)} \psi^{(N+1)}(x,x_1,...,x_N)$'dir.

Not: $a^{*}$ $f$'ye doğrusal bağımlıdır ama $a$ değildir.

Sav(Doğal ters değişme bağıntıları,ingl. CAR ): $\{a(f_1),a(f_2)\}=\{a^{*}(f_1),a^{*}(f_2)\}=0$, $\{a(f_1),a^{*}(f_2)\}=\langle f_1,f_2\rangle$
Not: Yere bağlı yoketme işlemcisi $a_j:=a(e_j)$ ile $a(x)=\sum_j a(e_j \bar{e_j}(x))=\sum_j e_i(x)a_j$'dır. Ayrıca fizik kitaplarında geçen $\{a_j,a_k\}=\delta_{jk}$'nın anlamı da buradan çıkıyor.

Teorem:
$a^{*}(f)$ ve $a(f)$ birbirinin eşleniğidir.
Not: Bozonlar için bu doğru değildir.

Tanım (simetrik işlemcinin i.k.): A işlemcisi $\mathcal{H}$ üzerinde simetrik olsun. $A$'nın ikinci kuantumlaması $d\Gamma(A):\text{böl}(d\Gamma)\subset \mathcal{F}\rightarrow\mathcal{F},A\mapsto A\otimes  1\!\!1\otimes ...\otimes 1\!\!1+...+ 1\!\!1\otimes ...\otimes 1\!\!1\otimes A$'dır. $N:=d\Gamma( 1\!\!1)$'ye sayı işlemcisi denir.
Soru: $d\Gamma(A)$'nın özellikleri nelerdir?
Tanım (üniter işlemcinin i.k.): $U$ $\mathcal{H}$'de üniter bir işlemci olsun. $U$'nun ikinci kuantumlaması $\Gamma(U)$ bütün $\mathcal{H}^{N}$'leri $\mathcal{H}^{N}$'de değişmez bırakan işlemcidir $\bigotimes^{N}U$.

Sav: Eğer $A$ özeşlenik ise, $e^{itA}$ üniter grubunu ikinci kuantumlaması $\Gamma(e^{itA})=e^{itd\Gamma(A)}$'dır.

Not: Fizikteki kullanımı $A_{ij}:=\langle e_i,A e_j\rangle$, $d\Gamma(A)=\sum_{i,j}A_{i,j}a_i^{*}a_j$'a denk geliyor.

Sav (İki cisim işlemcisi): $\mathcal{H}^{(N)}$ üzerindeki $H:=\displaystyle\sum_{n=1}^N \left( -\triangle -\frac{Z}{\vert x\vert}\right)+\displaystyle\sum_{1\leq n< m\leq N} \frac{1}{\vert x_m-x_n\vert}$ Hamiltonyeninin ikinci kuantumlanmış hali $W_{i,j,k,l}:=\langle e_i\otimes e_j,\frac{1}{\vert\cdot\vert}e_k\otimes e_l \rangle$ ile   $\Gamma(H):=\displaystyle\sum_{i,j}(e_i(-\triangle-\frac{Z}{\vert{x}\vert})e_j)a_i^*a_j+\displaystyle\sum_{i,j,k,l}a_i^*a_j^* a_l a_k W_{i,j,k,l}$'dir. Ayrıca $H$ $\exists \lambda\in\mathbb{R}:H+\lambda d\Gamma(1)\geq 0$ özelliği (bunu da gösterin) sayesinde özeşleniktir.

18, Ağustos, 2015 Akademik Fizik kategorisinde fiziksever (1,165 puan) tarafından  soruldu
25, Ağustos, 2015 fiziksever tarafından düzenlendi

ikinci kuvantumlanmanın ingilizce karşılığı nedir?

Second quantization.

...