$(X,\preceq)$ poset ve $A,B\subseteq X$ olmak üzere $``(A \text{,üstten sınırlı})(B \text{, üstten sınırlı})\Rightarrow A\cup B \text{, üstten sınırlı}"$ önermesi doğru mudur? Yanıtınızı kanıtlayınız.

1 beğenilme 0 beğenilmeme
41 kez görüntülendi

$(X,\preceq)$ poset ve $A,B\subseteq X$ olmak üzere

$``(A \text{,üstten sınırlı})(B \text{, üstten sınırlı})\Rightarrow A\cup B \text{, üstten sınırlı}"$ önermesi doğru mudur? Yanıtınızı kanıtlayınız.

Not: $(X,\preceq)$ poset $:\Leftrightarrow \preceq , X$ de kısmi sıralama bağıntısı



10, Şubat, 10 Lisans Matematik kategorisinde HakanErgun (193 puan) tarafından  soruldu

1 cevap

1 beğenilme 0 beğenilmeme

$X=\{a,b,c\} \text{ ve } \preceq=\{(a,a),(b,b),(c,c),(b,c)\}$ olmak üzere $A=\{a\}$ ve $B=\{c\}$ olsun.

$(X,\preceq)$ poset , $A^ü=\{a\}$ ve $B^ü=\{c\}$ olduğundan $A$ ve $B$ kümesi üstten sınırlıdır. Fakat $(A\cup B)^ü=\emptyset$ olduğundan $A\cup B$ kümesi üstten sınırlı değildir. O halde söz konusu önerme yanlıştır.

Not: $(X,\preceq)$ poset ve $A\subseteq X$ olmak üzere

$A^ü:=\{x \big{|} a\in A \Rightarrow a\preceq x\}$

$A$, üstten sınırlı:$\Leftrightarrow A^ü\neq\emptyset$





6 gün önce HakanErgun (193 puan) tarafından  cevaplandı
...