Tum sonlu cisimleri matris halkasi icine gomebiliriz

0 beğenilme 0 beğenilmeme
95 kez görüntülendi
Guzel bir bilgi. " Constant Rank Subspace of Matrices (nxn) Code, rank n" icin basit bir ispat da getirmistir. Bu bilgiden dolayi akademik listeye ekledim, aslinda lisans sorusu.

Bu sorunun iyi olacagini dusunuyorum: $\mathbb{F}_8$'in elemanlarini $\mathbb{F}_2$ uzerinde $x^3+x+1$i kullanaraktan matris ile betimleyin (matrix representation).

Burda kelime ahpap olarak geciyor sozlukte ama "companion" matrisleri kullanacaz. 

(soruyu terimlerin gercek anlamlarini bilen degistirebilir. Tesekkur ederim.)
17, Şubat, 2015 Akademik Matematik kategorisinde Sercan (23,218 puan) tarafından  soruldu
17, Şubat, 2015 Sercan tarafından düzenlendi

Soruyu genisletmek icin yeni bilgiler olursa yeni soru yazabilir, ya da bu soruyu detaylandirabiliriz.

"Lidl and Niederreiter - Finite fields and applications" kitabının Chapter 2 Section 5 kısmında (sadece 3 sayfa) detaylı anlatıyor ve örnek de veriyor.

1 cevap

0 beğenilme 0 beğenilmeme

indirgenemez polinom olarak $x^3+x+1$'i alalim. O halde cismimizi su sekilde yazabiliriz:

$\{0,I,A,A+I,A^2,A^2+I,A^2+A,A^2+A+I\}$

oyle ki  $0$ sifir matrisi, $I$ birim matris ve de $A=\Bigg(\begin{matrix} 0 & 0 & 1\\ 1& 0 &1\\ 0& 1 & 0\end{matrix}\Bigg)$.

20, Mart, 2015 Sercan (23,218 puan) tarafından  cevaplandı
...