Halka icin uretec kumesi

0 beğenilme 0 beğenilmeme
119 kez görüntülendi

$A$ degismeli bir halka, $f_1,\cdots,f_k\in A$ elemanlarinin gerdigi ideal de $A$'ya esit olsun. Bu durumda her pozitif $N$ icin $f_1^N,\cdots,f_k^N$ elemanlarinin gerdigi ideal de $A$'ya esittir.


Ek: Halkamiz birimli.

24, Nisan, 2015 Lisans Matematik kategorisinde Safak Ozden (3,250 puan) tarafından  soruldu
26, Nisan, 2015 Handan tarafından yeniden gösterildi

N=1 icin dogru.

Halkada birim eleman var mı?

Duzelttim hocam.

Dün gece $A$ halkası değişmeli değil idi!

Değişmeliydi. Hem halkalar arası olağan üstü hal olmuş olabilir.

Zaten bir taraf açıktı. Diğer tarafta değişmelilikten ve birimi $f_i$ ler bakımından yazarak gelir diyorum. 

Hangi taraf? Soru tek yönlü değil mi?

$A$ nın $f_{i}^k$ lar bakımından yazılışındaki küme eşitliği. Yani alt küme eşitliği ile. 

$A=<f_1,f_2,...,f_k>$ olsun. İddia: $A=<f_1^{N},f_2^{N},...,f_k^{N}>$ her $N$ için. $x\in <f_1^{N},f_2^{N},...,f_k^{N}>$ olsun. Bu durumda $x=r_1f_1^{N}+...+r_kf_k^{N}$ olacak şekilde $r_1,..,r_k\in A$ vardır. $x=(r_1f_1^{N-1})f_1+(r_2f_2^{N-1})f_2+...+(r_kf_k^{N-1})f_k$ olup $x\in A$ olur.
Yani; $ <f_1^{N},...,f_{k}^{N}>\subseteq A$. Diğer tarafta doğru ama henüz göremedim!

1 cevap

1 beğenilme 0 beğenilmeme

$1=\sum_{i=1}^k a_if_i$ olsun. Her $j=1,2,\ldots,k$ için $f_j=\sum_{i=1}^k a_if_if_j$ ve $1=(\sum_{i=1}^k a_if_i)^N$ olur. $(\sum_{i=1}^k a_if_i)^N$ yi binom açılımı yapılırsa çoğu terimde her bir  $f_i$ nin kuvveti $N$ den küçük olacaktır. Bu terimlerde, $f_i$ nin kuvvetleri toplamına  "derece" diyelim. Her terimin derecesi $N$ dir. Bu durumdaki terimlerdeki $f_j$ yerine $\sum_{i=1}^k a_if_if_j$ yazıp dağılma uygularsak (her yeni) terimin derecesi 1 artacaktır. Bunu defalarca  yaparak her terimin derecesini $kN-k+1$ yapalım. Şimdi her terimde bir $f_j^N$ var olacaktır.

Böylece $A=<f_1^N,f_2^N,\ldots,f_k^N>$  olur.


26, Nisan, 2015 DoganDonmez (3,302 puan) tarafından  cevaplandı
26, Nisan, 2015 DoganDonmez tarafından düzenlendi
Hocam ben de ayni seyi bir baska bicimde yazayim. Siz sonucun nasil bulunmasi gerektigini yazmissiniz, benimki dogrudan sonucu yazmak olacak gerci. $M=kN-k+1$ olsun. Halkanin birim elemani $f_i$'ler tarafindan yazilabildigi icin$$1=\sum_{i=1}^ka_if_i$$esitligini saglayan $a_i\in A$ elemanlari bulunabilir. Simdi her iki tarafin $M$'inci kuvvetini alalim: $$1=\Big(\sum_{i=1}^ka_if_i\Big)^M=\sum u_{n_1,\cdots,n_k} f_1^{n_1}\cdots f_k^{n_k}$$Burada $u$ katsayilari $a_i$'lerin kombinasyonlarindan olusacak dogal olarak ayrica da $n_1+\cdots+n_k=M$ olacagi icin bu sayilardan en az bir tanesi $N$'den buyuk olacaktir. Yani her terim $f_i^N$'lerden birisinin kati olacaktir. Bu da $f_i^N$'lerle $1$'i yazmak demek.

Evet böyle daha iyi olmuş.

...