Düzlemde eşkenar üçgenin varlığı

0 beğenilme 0 beğenilmeme
331 kez görüntülendi
İki boyutlu koordinat düzleminde, her üç noktasının koordinatları da tamsayı olan bir eşkenar üçgen var mıdır? Varsa nedir?
20, Nisan, 2015 Orta Öğretim Matematik kategorisinde Cagan Ozdemir (672 puan) tarafından  soruldu
20, Ekim, 2015 DoganDonmez tarafından yeniden kategorilendirildi

Böyle bir üçgen varsa bu üçgenin kenarları eksenlere paralel olamaz.

Eksenlere paralel olsa aradaki kenarlar arasindaki aci 90 derece olur zaten.

2 Cevaplar

1 beğenilme 0 beğenilmeme
 
En İyi Cevap

Üçgenin köşeleri $(a_1,b_1),(a_2,b_2),(a_3,b_3)$ ve hepsi tamsayı olsun. Üçgenin alanı $\pm\frac12\det\left|\begin{array}{ccc} a_1 & b_1&1\\a_2&b_2&1\\a_3&b_3&1\end{array}\right|$ formülünden rasyonel bir sayı olur. Diğer taraftan alan taban-yükseklik formülünden bulunursa $\frac{\sqrt3}4\times a^2\quad (a:kenar)$ dir, ama kenarın karesi rasyoneldir (hatta tamsayıdır). $\sqrt3$ irrasyonel olduğu için alan irrasyonel olur. Çelişki.

Daha genel olarak bir eşkenar üçgenin köşelerinin  tüm koordinatlarının rasyonel olamayacağını da göstermiş olduk.

21, Nisan, 2015 DoganDonmez (3,534 puan) tarafından  cevaplandı
21, Nisan, 2015 Cagan Ozdemir tarafından seçilmiş
0 beğenilme 0 beğenilmeme

Bir köşesini koordinat sisteminin merkezi olarak alabiliriz. Merkezi koordinat sisteminin merkezindeki bir çemberle; $x^2+y^2=r^2$ çemberi ile y=mx ve y=m'x doğrularının kesim noktalarını bulmalıyız. Burada $tan\alpha=m$ ve $tan(\alpha+60)=m'$ olmalıdır. Bulunan bu noktaların koordinatlarının tam sayı olması koşulu incelenmelidir.

20, Nisan, 2015 Mehmet Toktaş (18,358 puan) tarafından  cevaplandı
...