$r_i,s_i\in \mathbb R$ iken $\displaystyle \sum {r_i^2} \sum {s_i^2} \ge \left({\sum {r_i s_i}}\right)^2$ olan "Cauchy Eşitsizliği"ni kanıtlayın

0 beğenilme 0 beğenilmeme
540 kez görüntülendi

$r_i,s_i\in \mathbb R$  iken  $\displaystyle \sum {r_i^2} \sum {s_i^2} \ge \left({\sum {r_i s_i}}\right)^2$ olan "Cauchy Eşitsizliği"ni kanıtlayın

19, Mayıs, 2016 Orta Öğretim Matematik kategorisinde Anil (7,729 puan) tarafından  soruldu
19, Mayıs, 2016 Sercan tarafından yeniden kategorilendirildi

1 cevap

0 beğenilme 0 beğenilmeme
 
En İyi Cevap

Norm ve ic carpim olarak yazdigimizda (goruntu guzelligi bakimindan) $$0\le\left\lVert\frac{u}{\lVert u\rVert}-\frac{v}{\lVert v\rVert}\right\rVert^2=\left(\frac{u}{\lVert u\rVert}-\frac{v}{\lVert v\rVert}\right)\cdot\left(\frac{u}{\lVert u\rVert}-\frac{v}{\lVert v\rVert}\right)$$$$=\left(\frac{u\cdot u}{\lVert u\rVert^2}+\frac{v\cdot v}{\lVert v\rVert^2}\right)-2 \frac{u\cdot v}{\lVert u \rVert \;\lVert v\rVert}=2-2 \frac{u\cdot v}{\lVert u \rVert \;\lVert v\rVert}$$ oldugundan $$ \frac{u\cdot v}{\lVert u \rVert \;\lVert v\rVert} \le 1$$ olur.


Not:

$u=(u_1,\cdots,u_n)$ ve $v=(v_1,\cdots,v_n)$ icin $$u\cdot v:=\sum\limits_{i=1}^nu_iv_i$$ ve 
$$\lVert u \rVert:= \sqrt{u \cdot u}$$ olarak tanimli.

Peki, esitlik ne zaman saglanir? Bunu bu cevap veriyor...

19, Mayıs, 2016 Sercan (23,864 puan) tarafından  cevaplandı
9, Mart, 2017 Sercan tarafından düzenlendi

Bu kisaltmalari yapmadan aynini yazarsak, aslinda bu tanimlara vs gerek kalmaz, fakat cok daginik gozukur. Her turlu anlasilan kisaltmanin destekcisiyiz :)

$\mathbb{R}^n$'de standart norm $\| u \|=\sqrt{u \cdot u}$ olarak tanımlanıyor yalnız. Zaten aslında ilk satırda da böyle kullanmışsın ama sonra hata olmuş.

Haklisin, kok eklemeyi unutmusum. Tesekkur ettim, duzeltme icin...

...