Doğal sayılar kümesinin kuvvet kümesi

0 beğenilme 0 beğenilmeme
281 kez görüntülendi

$\mathbb{N}$'nin tüm altkümelerinin büyüklüğü $\mathbb{R}$ kadardır. Şöyle de deniliyor sanırım: $|P(\mathbb{N})|=2^{\aleph_0}= \aleph_1 $.

Bunu nasıl gösterebiliriz?

17, Mayıs, 2016 Akademik Matematik kategorisinde Kirmizi (473 puan) tarafından  soruldu

Bu soruya bakmis miydin? Yanda da ilgili olarak ilk soru gerci. Oradaki yorumda verdigim ilgili link de bu soru cevaplaniyor.

Gözümden kaçmış, gizleyeyim mi soruyu kirlilik yaratmasın?

Tamamen ayni oldugundan ve soruda ek bir aciklama vs olmadigindan gizlemek daha iyi gibi. Istersen ispatlarda anlasilmayan yer olursa ekli bir sekilde tekrar acarsin, oneri olarak.

İlk eşitliği (yani $|\mathcal{P}(\mathbb{N})|=2^{\aleph_0}$) gösterebilirsiniz de ikinci eşitliği (yani $2^{\aleph_0}=\aleph_1$ olduğunu) gösteremezsiniz. Bu eşitliğe süreklilik hipotezi deniyor ve ZFC belitlerinden bağımsız bir önerme, yani ZFC belitleri ile $2^{\aleph_0}=\aleph_1$ olduğunu ne kanıtlayabilirsiniz ne de çürütebilirsiniz.

2 Cevaplar

0 beğenilme 0 beğenilmeme

$f:2^\mathbb N\rightarrow [0,1]$ fonksiyonunu şöyle tanımlayın

$f(E)=\sum\limits_{n\in E} 2^{-n}$ fonksiyonunu tanımlayın. Bu fonksiyon örtendir ama birebir değildir. Örneğin $\{1\}$ kümesi ile $\{2,3,4,...\}$ nin görüntüsü aynıdırr. Basit bir düzeltme ile birebir örten fonksiyon kurabilirsiniz o da size kalsın. 

Saygılar

29, Mayıs, 2016 Cenk Turgay (189 puan) tarafından  cevaplandı
0 beğenilme 0 beğenilmeme
Sorunun ilk kısmı için gerekli ipucu Cenk Turgay tarafından verilmiş. Ben de ikinci kısmıyla ilgili birkaç kelam edeyim.

$\aleph_1$ kardinali tüm sayılabilir ordinallerin kümesidir ve ilk sayılamaz kardinaldir. (Bu kardinalin gerçel sayıların kardinalitesi olarak tanımlandığının sanıldığına rastladığımdan dolayı belirtme gereği duyuyorum, $\aleph_1$ gerçel sayıların kardinalitesi olarak tanımlanmış değildir.)

Seçim beliti altında kardinalitesi doğal sayılardan daha büyük ve gerçel sayılardan daha küçük bir küme olmadığı varsayımı (ki buna süreklilik hipotezi denir) yazdığınız $2^{\aleph_0}=\aleph_1$ eşitliğine denktir.

Bu eşitliğin ZFC belitlerinden bağımsız olduğu (yani ZFC tutarlı ise ZFC ile bu eşitliğin kendisini ve değilini kanıtlayamayacağınız) Kurt Gödel ve Paul Cohen tarafından gösterilmiştir. Süreklilik hipotezinin değilinin ZFC ile göreli tutarlı olduğunu göstermek için kullanılan zorlama tekniğiyle ilgili biraz bilgiye şu matkafası sorusundan erişebilirsiniz.
30, Mayıs, 2016 Burak (1,254 puan) tarafından  cevaplandı
30, Mayıs, 2016 Burak tarafından düzenlendi
...