$$\frac{cosb.cosc}{sinb.sinc}+\frac{cosc.cosa}{sinc.sina}+\frac{cosa.cosb}{sina.sinb}=$$ Payda eşitlenirse,
$$=\frac{sina.cosb.cosc+sinb.cosc.cosa+sinc.cosa.cosb}{sina.sinb.sinc}$$
$$=\frac{cosc(sina.cosb+sinb.cosa)+sinc.cosa.cosb}{sina.sinb.sinc}$$
$$=\frac{cosc.sin(a+b)+sinc.cosa.cosb}{sina.sinb.sinc}$$ $a+b+c=\pi\Rightarrow a+b=\pi-c$ dir.
$$=\frac{cosc.sin(\pi-c)+sinc.cosa.cosb}{sina.sinb.sinc}$$ $sin(\pi-c)=sinc$ dir.
$$=\frac{cosc.sinc+sinc.cosa.cosb}{sina.sinb.sinc}=\frac{sinc(cosc+cosa.cosb)}{sina.sinb.sinc}$$
$$=\frac{cosc+cosa.cosb}{sina.sinb}=\frac{cos(\pi-(a+b))+cosa.cosb}{sina.sinb}$$ $cos(\pi-(a+b))=-cos(a+b)=-(cosacosb-sina.sinb)$ dir.
$$=\frac{-cos(a+b)+cosa.cosb}{sina.sinb}=\frac{-cosa.cosb+sina.sinb+cosa.cosb}{sina.sinb}=\frac{sina.sinb}{sina.sinb}=1$$ olacaktır.