Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
404 kez görüntülendi

R yarıçaplı bir küre içine çizilebilen ve hacmi maksimum olan silindiri bulunuz.

Orta Öğretim Matematik kategorisinde (96 puan) tarafından  | 404 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

Ben yaricapa $r_1$ diyecegim.Pisagor yaparsak.$h^2+r^2_2=r^2_1$ gelir.

Silindirin hacmi $V=2h.π.r^2_2$ olguna gore 

$V=2hπ.(r^2_1-h^2)$ gelir.Buradan gelen ifadenin bir kere türevini alirsak ve sifira esitlersek.

$2πr^2_1-6h^2π=0$.Buradan $h=\frac{r_1}{\sqrt{3}}$

O zaman r yaricapli bir kureninin içine yerleştirilen maksimum alanli silindirin hacmi.

$\frac{2r_1}{\sqrt{3}}.π.(r^2_1-\frac{r^2_1}{3})=\frac{4r^3_1.π}{3\sqrt{3}}$ gelir.

image


(11.1k puan) tarafından 
tarafından seçilmiş

Teşekkürler çok yardımcı oldunuz.

20,274 soru
21,803 cevap
73,476 yorum
2,428,156 kullanıcı