Analitik fonksiyonların büyümesi

0 beğenilme 0 beğenilmeme
322 kez görüntülendi
Bir $f$ ve $g$ birer polinom olsunlar. Şunu söyleyebiliriz. Eğer $f$'nin derecesi $g$'nin derecesinden büyükse yeterince büyük bir $x$ değerinden sonra $f$'nin değerleri $g$'nin değerlerinden hep büyük olur. Yani bir polinomun büyüme hızı derecesiyle doğru orantılı. Öte yandan polinomların dereceleri polinomların köklerinin sayısıyla ilgili. Açıkça, kökleri katlarıyla beraber sayarsak, bir polinomun derecesi köklerinin sayısına eşittir. Yani daha çok köke sahip (yani derecesi daha büyük) polinomlar daha hızlı büyür diyebiliriz.

Aynı ilke analitik fonksiyonlar için de geçerlli midir? Daha çok kökü olan analitik fonksiyonlar daha mı hızlı büyür? Buna dair bir teori var mı?
30, Mart, 2015 Lisans Matematik kategorisinde Safak Ozden (3,393 puan) tarafından  soruldu

$-x^4-1$ ve $x^2$..

Büyüme işaretten bağımsızdır.

buyuyen Turkiye :)

1 cevap

0 beğenilme 0 beğenilmeme
 
En İyi Cevap

Polinomlar hariç hiç bir tam fonksiyon sonsuzda sonlu veya sonsuz limite sahip değildir. $e^z$ gibidir, sonsuzda limiti yoktur, dolayısıyla büyümesi olanaksızdır. (elbette kompleks değişkenlilerden söz ediyoruz)

30, Mart, 2015 DoganDonmez (3,534 puan) tarafından  cevaplandı
30, Mart, 2015 Safak Ozden tarafından seçilmiş

Yine de yatay şeritlerdeki büyümeye dair bir teori yok mu?

Karmaşık sayilar uzerinde sonsuza giden limit alabilir miyiz?
(polinomlar hariç) Tam fonksiyonlarda Sonsuzda zorunlu tekillik (essential singularity) var. Büyük Picard Teoreminden sonsuzun her komşuluğunda belki bir değer hariç, her değeri alır
...