$S$ sicrama yuzeyi olsun (blowing up surface) oyle ki tum $p \in \mathbb{A^n}$ ve $p$ ve orijinden gecen $q$ dogrusu ikililerini icersin. Yani $S=\{(p,q) \: | \; p \in \mathbb{A^n}\} \subset \mathbb{A^n} \times \mathbb{P^{n-1}}$
$S=\mathbb{V}(x_iy_j-x_jy_i \: | \: 0 \leq i <j \leq n)$:
ispat: $p=(x_1,\cdots,x_n) \in \mathbb{A}$ noktasi $l=[y_1:\cdots:y_n]$ dogrusu uzerindedir ancak ve ancak $(x_1,\cdots,x_n)$ noktasi $(y_1,\cdots, y_n)$'in bir katidir.
sicrama yuzeyi $S$'den $\mathbb{A^n}$'ya $\pi(p,q)=p$ fonksiyonunu tanimlayalim (map). Eger $p=0$ degilse bu fonksiyon birebirdir. Eger $p=0$ ise $\pi^{-1}(0)=\{0\}\times\mathbb{P^{n-1}}$ olur. orijinde kesisen tum dogrular bu bolen (divisor) uzerinde sadece bir noktadan gecer. Bu da tekillikten kurtarir.