Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
928 kez görüntülendi

hiperyüzey: hypersurface, affine: afin

Akademik Matematik kategorisinde (1.1k puan) tarafından  | 928 kez görüntülendi

2 Cevaplar

0 beğenilme 0 beğenilmeme
$H=V(f)$ olsun. $H$ hiperyüzey olduğu için, $f$ tanım gereği lineer bir homojen polinom. Yani $$f=\sum_{i=0}^n\alpha_iX_i$$ ve en azından $\alpha_i$'lerden bir tanesi sıfır değil. Diyelim ki $\alpha_0\neq 0$ olsun. Şu iki fonksiyon $$h:[a_0:\cdots:a_N]\longmapsto[\alpha_0a_0+\alpha_1a_1+\cdots+\alpha_Na_N:a_1\cdots:a_N]$$ ve 
$$h^{-1}:[a_0:\cdots:a_N]\longmapsto[\alpha_0a_0-\alpha_1a_1-\cdots-\alpha_Na_N:a_1\cdots:a_N]$$
açık biçimde $\mathbb{P}^n$'den kendisine birer izomorfizma tanımlarlar (Bu fonksiyonların sürekli oldukları ve regüler fonksiyonları regüler fonksiyonlara geri çektikleri neredeyse armut piş ağzıma düş). Ama $h(V(f))=\{X_0=0\}$ o halde $$U_0= \mathbb{P}^n-V(X_0)\simeq \mathbb{P}^n-H.$$ Bilindiği üzere $U_0$ afindir.
(3.7k puan) tarafından 
tarafından düzenlendi
0 beğenilme 0 beğenilmeme

Soru lineer polinom için değil, herhangi homojen bir polinom için sorulmuş aslında. hypersurface ile hyperplane ayrımını kafamda Türkçe yapamadığım için özel durum için yanıt vermişim. Ama özel durum, aslında genel durumun ispatındaki bir adım. O yüzden çok da büyük bir sorun değil. Başlayalım.


Bu aslında Hartshorne'un morfizmalar kısmının beşinci alıştırması ve çözmek için $d$-lik gömmenin bir izomorfizma olduğunu kullanmak gerekiyor. $H=V(f)\subset\mathbb{P}^n$ ve $\deg f=d$ olsun. Amacımız $d$-lik $$\rho_d:\mathbb{P}^n\longrightarrow \mathbb{P}^N$$ göndermesinin $H$'yi lineer, homojen bir polinomun sıfırları kümesinin bir kesitine gönderdiğini göstermek. Son cümleyi açıklayayım: Amacımız, öyle bir lineer homojen polinom $g$ bulmak ki $H$'yi şöyle yazabilelim: $$H=\rho_d(\mathbb{P}^n)\cap V(g)$$ Bunu yaparsak, diğer yanıtı kullanarak sonuca ulaşırız. Bunun için öncelikle $d$ dereceli $f$ homojen polinomunu, derecesi $d$ olan monomların lineer kombinasyonu olarak yazalım $$f(X_0,\cdots,X_n)=\sum_{i=0}^N\alpha_i M_i(X_0,\dots,X_n),\qquad \alpha_i\in k.$$ Şimdi, $k[Y_0,\cdots,Y_N]$ polinom halkasındaki $$g(Y_0,\cdots,Y_N)=\sum_{i=0}^N\alpha_i Y_i$$lineer polinomunu alalım. Bu polinomun sıfırları kümesiyle $d$-lik gömmenin görüntüsünün kesişimi, $H$'nin görüntüsünden başka bir şey değildir.


İstenilen sonuç buradan çıkar. (Nasıl?)

(3.7k puan) tarafından 
$d$-lik gömme nedir?
20,279 soru
21,810 cevap
73,492 yorum
2,475,713 kullanıcı