Genelleştirilmiş Euler çarpımı

0 beğenilme 0 beğenilmeme
150 kez görüntülendi

Tamsayılardan kendisine giden bir $f$ çarpımsal bir fonksiyonu alalım. Yani $$(m,n)=1 \Rightarrow f(mn)=f(m)f(n)$$ önermesi her $m,n$ tamsayıları için doğru olsun. Bu durumda $$\sum_{n=1}^{\infty}\frac{f(n)}{n^s}$$ serisinin yakınsaklığı ile $$\prod_{p}\big(1+\frac{f(p)}{p^s}+\frac{f(p^2)}{p^{2s}}+\cdots\big)$$ çarpımının yakınsaklığı aynıdır. Ve yakınsaklık durumunda iki değer eşittir.


Not: Açık ki $f$ fonsksiyonu $1$ sabit fonksiyonu alınırsa ilk dizi Riemann zeta fonksiyonu olur ve eşitlik de Euler çarpım formülünü verir.

Not: Bu eşitlik sayesinde $\zeta$ fonsiyonun karesi, çeşitli varyantlarının birbirlerine oranlarının Drichlet serisi açılımları kolaylıkla bulunabilir.

21, Mart, 2015 Lisans Matematik kategorisinde Safak Ozden (3,393 puan) tarafından  soruldu
21, Mart, 2015 Safak Ozden tarafından düzenlendi

Bu bilgi amacli mi? Ya da carpma ile toplamayi neden yer degistirebilir sorusu mu :)

ne demek istediğini anlamadım :)

Soru ne burda :)

ilahi sercan :), bunu ispatlamak tabii ki 

...