Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
979 kez görüntülendi


$(m^3-n^2,1) = (19,m-n)$ olduğuna göre, $m+n$ toplamı kaçtır?

Orta Öğretim Matematik kategorisinde (12 puan) tarafından 
tarafından düzenlendi | 979 kez görüntülendi

m,n nedir? Tamsayı mı?

İlk ifadedeki $m^3-n^2$ hatalı olabilir mi?

Nisa eğer m^3 ifadesini iki tane \$ işaretinin arasına yazarsan $m^3$ olarak gözükür ki galiba bu da senin istediğin. Bu seferkini ben düzenliyorum, bir dahakine dikkat et olur mu? Bir de problemde şimdiye kadar ne yaptığını ve nerede takıldığını yazarsan daha iyi yardımcı olabiliriz.

1 cevap

0 beğenilme 0 beğenilmeme

İpucu: 

$$m^3-n^2=19 \,\ \text{ ve } \,\ m-n=1$$ olmalıdır.

$$m-n=1\Rightarrow m=n+1$$ olduğundan $$(n+1)^3-n^2=19$$

$$\Rightarrow$$

$$n=\ldots$$

(11.5k puan) tarafından 
20,284 soru
21,823 cevap
73,508 yorum
2,570,612 kullanıcı