$A\delta_y=\sum_{v \in X}a_v\delta_v$ olsun. Bu sekilde yazabiliriz cunku $\delta_v$'ler bu fonksiyonlar icin bir baz.
Bu durumda $a(x,y)=A\delta_y(x)=(\sum_{v \in X}a_v\delta_v)(x)=\sum_{v \in X}a_v\delta_v(x)=a_x.$
Simdi $f \in L(X)$ olsun. Biliyoruz ki $\delta_y$'ler bu fonksiyonlar icin bir baz ve $f=\sum_{y \in X}f(y)\delta_y$ seklinde yazilabilir. Bu durumda $$ [Af](x)=[A(\sum_{y \in X}f(y)\delta_y)](x)=\sum_{y \in X}f(y)[A\delta_y](x)=\sum_{y \in X}f(y)a(x,y)$$ olur.
Not: Yukaridaki esitliklerde 2.'den 3.'ye gecerken $A$'nin lineer olmasini ve $f(y)$'lerin $\mathbb C$'nin eleman olmaini kullandik. Aslinda $\mathbb C$ uzerinde $End$ halkasi bir moduldur.