Çözüm: Öncelikle $P(x)= x^3+3x^2−24x+1$ denirse, $P(-7)\cdot P(-6)<0$, $P(0)\cdot P(1)<0$, $P(3)\cdot P(4)<0$ olduğundan sürekli fonksiyonlar için ara değer teoremi gereğince bu polinomun üç gerçel kökü vardır. Belirlilik açısından bunları $-7<\alpha <-6$, $0<\beta < 1$, $3<\gamma < 4$ biçiminde aralıklara sıkıştırabiliriz. $a=\sqrt[3]{\alpha}$, $b=\sqrt[3]{\beta}$, $c=\sqrt[3]{\gamma}$ olmak üzere $t = a + b + c$ toplamının değerini arıyoruz. Bu belirlilik kısmını yapma amacımız $a<0<b<c<|a|$ olduğundan, ileride $ab+bc+ca$ türünde bir ifadeyle karşılaşırsak işaretini belirlemek faydalı olabilir. Örneğin, $ab<0$ ve $0<bc<-ac$ olup $ab+bc+ca<0$ olacaktır.
Şimdi şu küp açılımına bakalım:
$$t^3 = (a+b+c)^3 = a^3 + b^3 + c^3 + 6abc + 3ab(a+b) + 3bc(c+a) + 3ca(c+a)$$
Burada Vieta teoreminden $a^3 + b^3 + c^3 = \alpha + \beta + \gamma = -3$ ve $abc = \sqrt[3]{\alpha \beta \gamma} = -1$ yazılır. Ayrıca $a+b=t-c$, $b+c=t-a$, $c+a=t-b$ kullanılırsa denklem
$$ t^3 = 3t(ab+bc+ca) $$
biçimine gelir. $t=0$ veya $t^2 = 3(ab+bc+ca)$ dır. $t$ bir gerçel sayıdır. $ab+bc+ca<0$ olduğundan $t^2 = 3(ab+bc+ca)$ durumundan gerçel $t$ değeri gelmez. O halde tek seçenek $t=0$ durumudur.
$$ \sqrt[3]{\alpha} + \sqrt[3]{\beta} + \sqrt[3]{\gamma} = 0 $$
elde edilir.