denklemler; a ve b tam sayı ise a-b farkı kaçtır?

0 beğenilme 0 beğenilmeme
92 kez görüntülendi

$\frac{1}{4a-4b-62}$ - $\frac{1}{-a+3b+4}$ = 1

a ve b tam sayı olduğuna göre, a - b = ?

a ve b tam sayı olduğunu düşünerek şıklardan gittiğimde sonuca ulaşabiliyorum fakat pratik olarak çözmek için görmem gereken her ne ise onu bir türlü göremedim.

ilk kesirli ifadedeki paydanın 4 (a-b) - 62 olarak yazılabileceğini düşünerek şıkları ikiye kadar düşürdüm fakat gerçek çözümünü öğrenebilirsem daha iyi olacak.

Şimdiden teşekkürler.

İlgili soru

12, Şubat, 12 Orta Öğretim Matematik kategorisinde murater (13 puan) tarafından  soruldu
14, Şubat, 14 alpercay tarafından düzenlendi

$\dfrac{1}{x}-\dfrac{1}{y}=1$ denkleminin tam sayılardaki çözümleri ne olabilir? Buna yanıt verebilirsek sorunuzun çözümü de anlaşılmış olacaktır.

Cahilliğime verin, hiç bir şey çağrıştırmıyor.

En fazla şu kadarını düşünebiliyorum:  y - x = x.y
örneğin şu da olabilir:
$\dfrac{1}{2}-\dfrac{1}{-2}=1$
buradan da x=2 y=-2 diyebilirim

2 Cevaplar

0 beğenilme 0 beğenilmeme

$x=\dfrac{y}{y+1}=1-\dfrac{1}{y+1}$ sayisinin tam sayi olmasi icin $y=0$ veya $y=-2 $ olmalidir. Dolayisiyla $x=0 $ ve $x=2$ bulunur. Elbette x ve y sayıları 0 olamazlar. 

13, Şubat, 13 alpercay (1,775 puan) tarafından  cevaplandı
13, Şubat, 13 alpercay tarafından düzenlendi

x,y sıfır olamazlar.

Evet. Teşekkürler. 

0 beğenilme 0 beğenilmeme

$\dfrac{1}{x}-\dfrac{1}{y}=1$  eşitliğinden buna denk olan $$xy+x-y-1=-1$$ $$(y+1)(x-1)=-1$$  eşitliği elde edilir ve $y=-2$  ve  $x=2$  olması gerektiği görülür.

14, Şubat, 14 alpercay (1,775 puan) tarafından  cevaplandı
14, Şubat, 14 alpercay tarafından düzenlendi
...