Bazı temel basit eşitsizlik kanıtları

0 beğenilme 0 beğenilmeme
53 kez görüntülendi

Derslerde anlatılıp geçiliyor ama şu eşitsizlikler nasıl kanıtlanır? Yol gösterirseniz sevinirim.

1) $a>b$  olsun. $x<0$   için  $ax<bx$ dir.

2) $0>a>b$   veya $0<b<a$  olsun. $1/a<1/b$  olduğunu gösteriniz.

3) $0<a<1$  olsun. $0<a^2<a<1$  olduğunu gösteriniz.

 

24, Ocak, 24 Orta Öğretim Matematik kategorisinde ozlemakman (40 puan) tarafından  soruldu
24, Ocak, 24 alpercay tarafından düzenlendi

İlk önerme için $(a-b)>0$  olur dedim fakat devamını getiremedim.

Bunları sadece sıralama aksiyomları (sıralama tanımındaki koşullar) kullanarak ispatlayamayız.

Cisimlerdeki sıralamalarda aranan (fazladan koşullar içeren) sıralamalar için ispatlanabilir.

Bu fazladan koşullar, sıralamanın toplama ve çarpma ile "uyumlu" olması (ve tam sıralama olması) şeklindedir.

Onları belirtmek gerekiyor.

Onları bir listesini yazabilirsen gerisi gelecektir.

Dediklerinizi tam anlamadım fakat şöyle düşündüm ilk önermeyi:

$a-b>0$  ve $x<0$   olduğundan   $(a-b)x<0$  olur. Dağılma özelliğini kullanarak $$ax-bx<0$$  $$ax<bx$$   olur. Yani bir eşitsizliğin her iki yanı negatif bir sayı ile çarpılırsa eşitsizlik yön değiştirir.

2 için her iki tarafı da $a.b$'ye bölelim.

$0>a>b \\ \dfrac{0}{ab}>\dfrac{a}{ab}>\dfrac{b}{ab} \\ \dfrac{1}{b}>\dfrac{1}{a}$

Aynı şekilde,

$0<b<a \\ \dfrac{0}{ab}<\dfrac{b}{ab}<\dfrac{a}{ab} \\ \dfrac{1}{a}<\dfrac{1}{b}$

3 için her iki tarafı $a$ ile çarpalım.

$0<a<1 \\ 0<a^2<a$

İlk eşitsizliği de eklersek,

$0<a^2<a<1$

http://matkafasi.com/117747/her-sirali-cisimde-arsimet-ozelligi-saglanir-mir

deki soruya yaptığım (son) yorumda, bir cisimde sıralamanın neleri (3 özellik) sağladığını kabul etmenin yeteceği var. Diğer tüm özelikler onların sonucudur.

...