$ADC$ üçgeninde $B\in[DC]$ olacak şekilde bir $B$ noktası seçelim. $|AB|=c$, $|AD|=d$, $|BC|=a$ ve $|AC|=b$'dir. $ab=cd$ olduğuna göre $\widehat{ADC}$ kaç derecedir? - Matematik Kafası

$ADC$ üçgeninde $B\in[DC]$ olacak şekilde bir $B$ noktası seçelim. $|AB|=c$, $|AD|=d$, $|BC|=a$ ve $|AC|=b$'dir. $ab=cd$ olduğuna göre $\widehat{ADC}$ kaç derecedir?

0 beğenilme 0 beğenilmeme
125 kez görüntülendi

$ADC$ üçgeninde $B\in[DC]$ olacak şekilde bir $B$ noktası seçelim. $|AB|=c$, $|AD|=d$, $|BC|=a$ ve $|AC|=b$'dir. $m(\widehat{ABC})=24^\circ$, $m(\widehat{ACB})=30^\circ$'dir. $ab=cd$ olduğuna göre $\widehat{ADC}$ kaç derecedir?

Merhabalar, $|DB|\leq |AC|$ ön kabulu ile özel bir çözüm yapmaya çalıştım. Bunu için $DB]$ uzantısında $|EB|=b$ olacak şekilde bir $E$ noktası işaretledim. Sonra da $[AB$ uzantısında $|FB|=d$ olacak şekilde bir $F$ noktası işaretledim. $B$ noktası kuvveti sağladığı için $A,E,F,C$ noktaları çemberseldir. Buradan sonra $30^\circ$ kullanarak kenarları $b$ olan bir eşkenar üçgen oluşturdum, oluşturduğum eşkenar üçgenin A ve B dışındaki üçüncü noktası merkez gibi durdu ama daha sonra çelişkiye düştüm. Tavsiyeleriniz nelerdir?

5, Şubat, 5 Orta Öğretim Matematik kategorisinde Deniz Tuna Yalçın (895 puan) tarafından  soruldu
13, Şubat, 13 alpercay tarafından yeniden etikenlendirildi

Selam

Deniz hocam;

$\widehat{DAB}$=$\alpha$  ve $\text{BD=x alalım}$

$\text{a.b=c.d olduğundan BAD üçgeninin alanı ile BAC üçgeninin alanını }$ $\alpha\text{ ve 30 derece kullanarak yazıp oranladım.}$$\text{Bu oran}$$\dfrac{x}{2a}\text{olduğundan gerekli eşitlemeleri yapıp sin}\alpha=\dfrac{x}{2.a}$ buldum.Fakat kısır döngü içerisinde hep ispat geldi.

Belki başka arkadaşların değişik bir yorumu olur

Selam Engin Hocam,

Sadece Deniz demeniz yeterlidir, ben hoca değilim:) Alan hiç aklıma gelmemiş, teşekkür ederim.

Yazdıklarınız üzerine $ADB$ üçgeninde sinüs teoremi uyguladım ve$\dfrac{|DB|}{\sin\alpha}=2a=2R$ buldum. Bu üçgenin çevrel çemberinin yarıçapı $|BC|$'ye eşit oldu, bir de $ABC$ üçgeninde sinüs teoremi uygulayınca da benzer şekilde $c=r$ çıktı. Bunları anlık bir dalgınlıkla da hesaplamış olabilirim bilemiyorum şu an:) Bir de Mustafa Yağcı'nın zihin 1 sorusundaki üçgene benzetebilir miyiz diye düşündüm $ABC$ üçgenini? ($30^\circ$ ve $24^\circ$'ü görünce:)

Selam Deniz 

Zihin 1 aslında güzel mantık işi fakat bu soruda oturtamadim. Uymayan birşey var ya da ben göremedim. Hatta eşkenar sonrası 36-72-72 ikizkenar üçgeni de geldi ama göremedim. Köy gezintisi yapıyoruz. Akşama çizimi paylaşırım belki ekleme -cıkarma  olur.yorum filan gelir.

Selamlar

Teşekkür ederim hocam, iyi geziler:)

Trigonometri kullanarak yaniti 18 derece buluyorum ama bunun icin ya  hesap nakinesinden faydalanmaliyiz ya da  $2cos36sin12=1/4$ esitligini gostermeliyiz. Gidis yolu olarak sinus teoreminden faydalandim.

1 cevap

1 beğenilme 0 beğenilmeme
 
En İyi Cevap

Sırasıyla $ABC$  ve  $ADC$  üçgenlerine sinüs teoremi uygulanır  ve  $a.d=c.d$  eşitliğinden faydalanılırsa $$\dfrac{a}{c}=\dfrac{\sin54}{\sin30}=\dfrac{d}{b}=\dfrac{\sin30}{\sin x}$$  ya da   $\sin x.\sin 54=1/4=2\sin((x+54)/2).\cos((x-54)/2)$  eşitliğini buluruz. Bundan sonra biraz trigonometri kullanarak   $\sin54=\dfrac{\sqrt 5+1}{4}$ bulunarak  $\sin x=\dfrac{\sqrt 5-1}{4}$  eşitliğinden  dar açı olarak  $x=18^{\circ}$   bulunur. Burada  $\dfrac{a}{c}=\dfrac{\sin54}{\sin30}=\dfrac{d}{b}=\dfrac{\sin30}{\sin x}=\dfrac{\sqrt5+1}{2}=1,618...$  sayısı yani altın oran çıkıyor. Bakınız  http://matkafasi.com/73378/duzgun-besgen-ve-altin-oran  Bu linkte $AC/AB= \sin72/\sin36$  oranı da altın oranı veriyor. Demek ki bu oranı veren açıları bilirsek de soruya kısaca yanıt verebiliriz.

13, Şubat, 13 alpercay (1,194 puan) tarafından  cevaplandı
13, Şubat, 13 Deniz Tuna Yalçın tarafından seçilmiş

Elinize sağlık hocam teşekkür ederim:)

Birşey değil Deniz. İlgili soru

...