Çarpım Uzaylarında Kapanış

0 beğenilme 0 beğenilmeme
23 kez görüntülendi

$(X,\tau_1),(Y,\tau_2)$ topolojik uzaylar olmak üzere

$$(A\subseteq X)(B\subseteq Y)\Rightarrow \overline{A\times B}=\overline{A}\times \overline{B}$$ olduğunu gösteriniz.

15, Mayıs, 2017 Lisans Matematik kategorisinde murad.ozkoc (8,818 puan) tarafından  soruldu

Bu linkteki bilgiden faydalanabilirsiniz.

1 cevap

0 beğenilme 0 beğenilmeme





$\left.\begin{array}{rr} (A\subseteq X)(B\subseteq Y)\Rightarrow \left(A\subseteq\overline{A}\right)\left(B\subseteq \overline{B}\right)\Rightarrow A\times B\subseteq \overline{A}\times \overline{B}\Rightarrow \overline{A\times B}\subseteq \overline{\overline{A}\times \overline{B}} \\ (A\subseteq X)(B\subseteq Y)\Rightarrow \left(\overline{A}\in C(X)\right)\left(\overline{B}\in C(Y)\right)\overset{?}{\Rightarrow} \overline{A}\times \overline{B}\in C(X\times Y)\Rightarrow \overline{\overline{A}\times \overline{B}}=\overline{A}\times \overline{B} \end{array}\right\}\Rightarrow $

$\Rightarrow \overline{A\times B}\subseteq \overline{A}\times \overline{B} \ldots (1) $

$--------------------------------------$

$\left.\begin{array}{rr} \left.\begin{array}{rr} \pi_1:X\times Y\to X \,\ (\tau_1\star\tau_2\mbox{ - }\tau_1) \text{ sürekli} \\ (A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\end{array}\right\}\Rightarrow \pi_1\left[\overline{A\times B}\right]\subseteq \overline{\pi_1[A\times B]}=\overline{A} \\ \\ \left.\begin{array}{rr} \pi_2:X\times Y\to Y \,\ (\tau_1\star\tau_2\mbox{ - }\tau_2) \text{ sürekli} \\ (A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\end{array}\right\}\Rightarrow \pi_2\left[\overline{A\times B}\right]\subseteq \overline{\pi_2[A\times B]}=\overline{B} \end{array}\right\}\Rightarrow $

$\Rightarrow \overline{A\times B} \overset{?}{\subseteq}\pi_1\left[\overline{A\times B}\right]\times \pi_2\left[\overline{A\times B} \right]\subseteq \overline{A}  \times \overline{B} \ldots (2)$

$--------------------------------------$

$$(1),(2)\Rightarrow \overline{A\times B}=\overline{A}\times\overline{B}.$$

Not : Kanıttaki ilk soru işaretinin olduğu yerdeki geçişin gerekçesine buradaki linkten ulaşılabilir. Kanıttaki ikinci soru işaretinin olduğu yerdeki geçişin gerekçesine ise  buradaki linkten ulaşılabilir. 

6, Haziran, 2017 murad.ozkoc (8,818 puan) tarafından  cevaplandı
7, Haziran, 2017 murad.ozkoc tarafından düzenlendi
...