$\dfrac{1}{x}<3/8 ,\dfrac{1}{y}<2/11$ ise
$\dfrac{1}{x}+\dfrac{1}{y} < \dfrac{3}{8} + \dfrac{2}{11}..............(1)$
$\dfrac{x.y}{x+y}=A$ diyelim. Ozaman,
$\dfrac{x+y}{x.y}=\dfrac{1}{A}$ olur.
$\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{A}$
1. Denklemden,
$\dfrac{1}{A} < \dfrac{3}{8} + \dfrac{2}{11}$
$\dfrac{1}{A} < \dfrac{49}{88} $
$ A>\dfrac{88}{49} $
Buradan A nin en kucuk degeri 2 olmalidir.